
Why My App Crashes? Understanding and
Benchmarking Framework-Specific

Exceptions of Android Apps
Ting Su , Lingling Fan , Sen Chen , Yang Liu , Lihua Xu, Geguang Pu , and Zhendong Su

Abstract—Mobile apps have become ubiquitous. Ensuring their correctness and reliability is important. However, many apps still

suffer from occasional to frequent crashes, weakening their competitive edge. Large-scale, deep analyses of the characteristics of real-

world app crashes can provide useful insights to both developers and researchers. However, such studies are difficult and yet to be

carried out — this work fills this gap. We collected 16,245 and 8,760 unique exceptions from 2,486 open-source and 3,230 commercial

Android apps, respectively, and observed that the exceptions thrown from Android framework (termed “ framework-specific

exceptions”) account for the majority. With one-year effort, we (1) extensively investigated these framework-specific exceptions, and

(2) further conducted an online survey of 135 professional app developers about how they analyze, test, reproduce and fix these

exceptions. Specifically, we aim to understand the framework-specific exceptions from several perspectives: (i) their characteristics

(e.g., manifestation locations, fault taxonomy), (ii) the developers’ testing practices, (iii) existing bug detection techniques’

effectiveness, (iv) their reproducibility and (v) bug fixes. To enable follow-up research (e.g., bug understanding, detection, localization

and repairing), we further systematically constructed, DroidDefects, the first comprehensive and largest benchmark of Android app

exception bugs. This benchmark contains 33 reproducible exceptions (with test cases, stack traces, faulty and fixed app versions, bug

types, etc.), and 3,696 ground-truth exceptions (real faults manifested by automated testing tools), which cover the apps with different

complexities and diverse exception types. Based on our findings, we also built two prototype tools: Stoat+, an optimized dynamic

testing tool, which quickly uncovered three previously-unknown, fixed crashes in Gmail and Google+; ExLocator, an exception

localization tool, which can locate the root causes of specific exception types. Our dataset, benchmark and tools are publicly available

on https://github.com/tingsu/droiddefects.

Index Terms—Mobile applications, android applications, empirical study, exception analysis, software testing, bug reproducibility

Ç

1 INTRODUCTION

MOBILE apps have become ubiquitous recently. For
example, Google Play, Google’s official Android app

market, contains over three million apps; over 50,000 apps
are continuously published on it [1] each month. To ensure
the competitive edge, app developers strive to deliver high-

quality apps [2]. One of their primary concerns is to prevent
fail-stop errors (i.e., app crashes) from releases [3], [4].

1.1 Motivations

In industry, many testing frameworks (e.g., Robotium [5],
Appium [6]) and static checking tools (e.g., Lint [7], Find-
Bugs [8]) are available [9], [10] to improve app quality.
However, many released apps still suffer from crashes. Two
recent studies [11], [12] discovered hundreds of previously
unknown crashes in popular and well-tested commercial
apps. This may make developers wondering “why my app
crashes?”. Researchers have proposed a number of testing
techniques and tools [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24] to reveal app crashes. How-
ever, none of them investigated the root causes of these
crashes. Without the answer to this question, developers
may not know how to effectively avoid and fix these bugs.
By analyzing the 272,629 issues mined from 2,174 Android
apps hosted on GitHub and Google Code, we find nearly
40 percent of the reported crash issues remain open/unfixed
(filtered by the keywords “crash” or “exception” in their issue
descriptions). This situation could compromise the app qual-
ity, considering these issues may probably lead to fail-stop
errors after releasing. Even worse, due to the lack of under-
standing of root causes, the follow-up research, e.g., bug
detection, localization and repairing, might be constrained.
For example, existing fault localization [25] and repairing [26],

� Ting Su is with the School of Software Engineering, East China Normal Uni-
versity, Shanghai, China , and also with the Department of Computer Science,
ETHZurich, 8092 Zurich, Switzerland. E-mail: tsuletgo@gmail.com.

� Lingling Fan is with the College of Cyber Science, Nankai Univerisity,
Tianjin, China , and also with the Nanyang Technological University,
Singapore 639798. E-mail: llfan@ntu.edu.sg.

� Sen Chen is with the College of Intelligence and Computing, Tianjin Uni-
versity, Tianjin, China , and also with the Nanyang Technological Univer-
sity, Singapore 639798. E-mail: chensen@ntu.edu.sg.

� Yang Liu is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798.
E-mail: yangliu@ntu.edu.sg.

� Lihua Xu is with the Department of Computer Science and Engineering,
New York University Shanghai, Shanghai 200122, China.
E-mail: lihua.xu@nyu.edu.

� Geguang Pu is with the School of Software Engineering, East China Nor-
mal University, Shanghai 2000Ł62, China. E-mail: ggpu@sei.ecnu.edu.sg.

� Zhendong Su is with the Department of Computer Science, ETH Zurich,
8092 Zurich, Switzerland. E-mail: zhendong.su@inf.ethz.ch.

Manuscript received 4 Feb. 2020; revised 29 May 2020; accepted 13 July 2020.
Date of publication 31 July 2020; date of current version 18 Apr. 2022.
(Corresponding authors: Lingling Fan and Geguang Pu.)
Recommended for acceptance by K. Sen.
Digital Object Identifier no. 10.1109/TSE.2020.3013438

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022 1115

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0002-2428-9297
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-9750-8334
https://orcid.org/0000-0001-9750-8334
https://orcid.org/0000-0001-9750-8334
https://orcid.org/0000-0001-9750-8334
https://orcid.org/0000-0001-9750-8334
https://github.com/tingsu/droiddefects
mailto:tsuletgo@gmail.com
mailto:llfan@ntu.edu.sg
mailto:chensen@ntu.edu.sg
mailto:yangliu@ntu.edu.sg
mailto:lihua.xu@nyu.edu
mailto:ggpu@sei.ecnu.edu.sg
mailto:zhendong.su@inf.ethz.ch

[27] tools for Android apps are limited to a small set of trivial
crash bugs. Thus, it is important to conduct such a study —
characterizing the root causes from a large-scale, diverse set
of real-world app crashes, and investigating how to effec-
tively detect, reproduce, and fix them. However, such a study
is difficult and yet to be carried out, which has motivated
thiswork.

Routinely, when an app crashes, the Android runtime sys-
tem will dump an exception trace that provides certain clues
of the issue (e.g., the exception type, message, and the stack of
invoked methods). Based on the architecture layer throwing
the exception, each exception can be classified into one of
three categories — application exception, framework exception,1

and library exception (cf. Section 2.1). Specifically, we find
framework exceptions account for themajority of app crashes,
affecting over 75 percent of the projects (cf. Section 3). Thus,
we focus on analyzing framework exceptions, and also brief
the other two exception types (cf. Section 3.1).

1.2 Challenges

We face three key challenges in this study. (1) The first is the
lack of comprehensive dataset. To enable crash analysis, we
need a comprehensive set of crashes from many apps. Ide-
ally, each crash is associated with the exception trace, the
buggy code version, the bug-triggering test, and the patch (if
exists). However, to our knowledge, no such dataset exists.
Despite open-source project hosting platforms (e.g., GitHub
andGoogle Code) maintain issue repositories, we find only a
small set of crash issues (� 16%) are accompanied with
exception traces. Among them, only a small fraction has clear
reproduction steps (with target app versions and environ-
ment); even if the issue is closed, the faulty code versionmay
not be linked with the fixed one. (2) The second concerns
difficulties in crash analysis. Analyzing crashes requires deep
knowledge of app logic, Android framework, and even
third-party libraries. However, no reliable tool exists that
can help our analysis. As a result, the crash analysis requires
considerable human expertise and efforts. (3) The third is the
validation of analysis results and findings. To reduce the threats
to validity, we need to consider diverse categories/types of

apps, and cross-check our findings by referring to the devel-
opers’ expertise and experience.

To achieve this study, we made substantial efforts in sev-
eral aspects. Fig. 1 shows the overview of our study.

1.3 Data Collection and Online Survey

We collected 16,245 unique exception traces from 2,486
open-source (F-Droid) apps as our analysis data (see
Fig. 1a) by (1) mining the issue repositories; and (2) apply-
ing the three state-of-the-art app testing tools (Monkey [28],
Sapienz [11], and Stoat [12]). We also run the three testing
tools on 3,230 Google Play apps, and collected 8,760 unique
exception traces, to complement our analysis data. More-
over, we conducted an online survey, and received 135 app
developers’ responses about how they analyze, test, repro-
duce and fix exception bugs to cross-validate our analysis
results and gain more insights (see Fig. 1b).

1.4 Crash Analysis

We aim to answer the following research questions.

� RQ1 (Exception Characteristics): What are the character-
istics of these exceptions, e.g., exception categories, distri-
butions, and locations of manifestation?

� RQ2 (Root Causes): What are the root causes of frame-
work exceptions? What are the difficulties app developers
face when analyzing them?

� RQ3 (Exception Detection): What tools are commonly
used by developers to detect exception bugs? Are they
satisfactory?

� RQ4 (Auditing Tools): How effective is the state-of-the-
art bug detection techniques in manifesting framework
exceptions?

� RQ5 (Exception Reproduction): How is the reproducibil-
ity of app exception bugs? Are there any difficulties of
reproducing?

� RQ6 (Exception Fixing): How do developers fix frame-
work exceptions? Are there any difficulties app developers
face?

Through these questions, we find framework exceptions
account for themajority in both open-source and commercial
apps. They have lower issue closing rate2 (only 53 percent),

Fig. 1. Overview of our study.

1. For brevity, we use framework exception to indicate framework-spe-
cific exception, which can be any exception thrown from Android
framework.

2. The percentage of how many issues has been closed by
developers.

1116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

compared with application exceptions (67 percent).
Through careful analysis, we distilled 11 common fault
categories, which have not been well-investigated before
(cf. Section 3.2).

Informed by the developer survey, we further audited
existing automated bug detection tools on framework
exceptions (cf. Section 3.4). We find dynamic testing tools
can reveal framework exceptions, but are still less effective
on certain fault categories. Their testing strategies have a
big impact on the detection ability. In addition, these testing
tools have low reproducing rates (cf. Section 3.5). We also
find most exceptions can be fixed by five common practices
with small patches (fewer than 20 code lines), but develop-
ers face several difficulties in fixing (cf. Section 3.6).

1.5 Applications

Based on our study, we made several applications: (1) We
constructed DroidDefects, the first comprehensive and largest
benchmark of Android app exception bugs. It contains 33
reproducible and 3,696 ground-truth exception bugs, and
covers diverse exception types, root causes, app complexi-
ties and categories, and relevant bug information. It can
help follow-up research, e.g., bug understanding, detection,
localization, prediction, and patch generation for Android
apps. (2) We optimized Stoat,3 a GUI testing tool, by inte-
grating a number of testing strategies, which quickly
revealed three previously unknown bugs in Gmail and Goo-
gle+. (3) We built ExLocator,4 an exception localization tool,
which can help localize the root causes of specific exception
types. (4) We also demonstrated the possibility of enhancing
static checking and mutation testing for Android apps.

1.6 Contributions

To summarize, we made the following contributions:

� We conducted the first large-scale study to investi-
gate exception bugs (framework exceptions in partic-
ular) of Android apps, and identified 11 common
fault categories. The results provide useful insights
for both researchers and developers.

� Our study evaluated the state-of-the-art bug detec-
tion techniques, reviewed the reproducibility of
these exceptions, and investigated common fixing
practices. The findings motivate more effective bug
detection, reproduction, and fixing techniques.

� We conducted an online survey to understand how
developers analyze, test, reproduce and fix crashes.
This survey gains more insights from the developers’
experiences, and also validates our analysis results.

� We constructed DroidDefects, the first comprehensive
and largest benchmark of Android app exceptions,
to enable follow-up research. We built two prototype
tools Stoat+ and Exlocator to improve bug detection
and debugging, and summarized several lessons
learned.

In our prior work [29], we investigated framework-specific
exceptions in Android apps. In this journal version, we have
made substantial extensions: (1) We additionally analyzed

8,760 exception bugs from3,230 commercial apps fromGoogle
Play. It provided more observations on the characteristics of
exception bugs, and validated the generability of our conclu-
sion (Sections 2.2 and 3.1). (2) We conducted an online survey
among 135 Android app developers. It provided more
insights from the developers’ experiences and complemented
our analysis results (Sections 2.3, Sections 3.1, 3.2, 3.3, 3.4, 3.5,
and 3.6 (RQ1�RQ6)). (3) We revisited our research questions
(i.e., RQ1, RQ2, RQ4 and RQ6) in depth and analyzed together
with the results from the online survey. For example, we addi-
tionally investigated the difficulties the developers face when
analyzing root causes, the common fix practices, and the rea-
sons of library exceptions, etc. (4)We additionally studied two
new research questions, i.e., the testing practices of exception
bugs by developers (RQ3 in Section 3.3), and the reproducibil-
ity of exception bugs from the perspectives of both developers
and testing tools (RQ5 in Section 3.5). It reveals the unsatisfac-
tory points of existing testing tools, and the challenges that
app developers and state-of-the-art tools face in reproducing
exceptions, which have not yet been explored before. (5) We
constructed the benchmark repository DroidDefects. It now
contains 33 reproducible and 3,696 ground-truth exception
bugs and the utility program for facilitating other research
work. For each bug, we provided the faulty code version, the
reproducible test, the exception trace and the explanation of
root cause. DroidDefects can serve follow-up research work
(Section 4). (6) We further illustrated more application
domains of our study. We also extended our analysis on the
empirical study and analysis results, and concluded with sev-
eral lessons learned that were not identified before (Section 5
and 6). Importantly, our dataset, benchmark and tools were
made publicly available at https://github.com/tingsu/droiddefects.

2 PRELIMINARY AND STUDY PREPARATION

2.1 Android Exception Model

The architecture of Android platform is composed of four
layers, i.e., application, framework, library and Linux ker-
nel. Android apps run at the application layer. The Android
framework APIs form the building blocks of apps. To pro-
vide different functionalities and services, Android reuses a
number of libraries (e.g., Apache, SSL, OpenGL). When an
app crashes, a (Java) exception will be thrown from one of
these three layers, which corresponds to application, frame-
work or library exception.

Android apps (implemented in Java) inherit the exception
model of Java, which has three kinds of exceptions. (1)
RuntimeException, the exceptions that are thrown during the
normal operation of the Java Virtual Machine when the pro-
gram violates the semantic constraints (e.g., null-pointer dere-
ferences, divided-by-zero errors). (2) Error, which represents
serious problems that a reasonable application should not try
to catch (e.g., OutOfMemoryError). (3) CheckedException (all
exceptions except (1) and (2)), these exceptions are required to
be declared in a method or constructor’s throws clause (stati-
cally checked by compilers), and indicate the conditions that a
reasonable client program might want to catch. The pro-
grammers are responsible to handle RuntimeException and
Error by themselves at runtime.

Fig. 2 shows an example of RuntimeException. The bottom
part represents the root exception, i.e.,NumberFormatException,

3. Stoat is available at https://github.com/tingsu/stoat.
4. Exlocator is available at https://github.com/crashanalysis/ExLocator.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1117

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tingsu/droiddefects
https://github.com/tingsu/stoat
https://github.com/crashanalysis/ExLocator

which indicates the root cause. Java uses exceptionwrapping, i.e.,
one exception is caught and wrapped in another to propagate
exceptions. In this case, RuntimeException in the top part
wraps NumberFormatException. Note that the root exception
can be wrapped by multiple exceptions, and the flow from the
bottom to the top denotes the order of exception wrappings.
An exception signaler, the first called method under the root
exception declaration (e.g., invalidReal in this case), is the
method that throws the exception. To classify each exception,
we referred to Android documentation [30] (API level 18) and
the heuristic rules defined by prior work (Table II in [31])
according to the signaler’s origin: (1) Application Exception: the
signaler is defined in the application code. We can recognize it
by the application’s package name. (2) Framework Exception:
the signaler is defined in the Android framework, i.e., from
these packages: “android:�”, “com:android:�”, “java:�”, and
“javax:�”. (3) Library Exception: the signaler is defined in the lib-
core inAndroid framework (e.g., “org:apache:�”, “org:json:�”,
“org:w3c:�”) or third-party libraries used by the app. Note
that, in this study, we do not consider native crashes caused by
C++ exceptions, and do not consider Java exceptions caused
by the bugs of Android framework itself.

2.2 Data Collection

2.2.1 App Subjects

We collected our app subjects from F-Droid [32] and Google
Play Store [33].We chose F-Droid due to three reasons. First, it
is the largest repository of open-source Android apps. At the
time of our study, it contains over 2,104 unique apps and
4,560 different releases (each app has 1�3 recent releases),
and maintains their metadata (e.g., project addresses, history
versions). Second, the apps have diverse categories (e.g., Inter-
net, Personal, Tools), covering different maturity levels of
developers, which are the representatives of real-world apps.
Third, all apps are hosted on GitHub, Google Code, Source-
Forge, etc, which makes it possible to access their source code
and issue repositories. Additionally, we randomly selected
3,230 closed-source apps fromGoogle Play, Google’s Android
app market, which has millions of commercial apps with
diverse categories.We uniformly selected these apps from the
top ten categories (e.g., Education, Lifestyle, Business,
Tools) [1], and each app has at least one million installations.
These apps could be regarded as the representatives of com-
mercial apps.

2.2.2 Exception Trace Collection

Table 1 summarizes the statistics of collected exception
traces from hosting platforms (GitHub and Google Code)
and testing tools. We applied testing tools on both F-Droid
apps and Google Play apps to collect exceptions.

Issue Repositories. We collected exception traces from
GitHub and Google Code since they host over 85 percent
(2,174/2,549) F-Droid apps. To automate data collection, we
implemented a web crawler to automatically crawl the issue
repositories of these apps, and collected the issues that con-
tain exception traces. In detail, the crawler visits each issue
and its comments to extract valid exception traces. Addi-
tionally, it utilizes GitHub and Google Code APIs to collect
project information such as package name, issue id, number
of comments, open/closed time. We took about two weeks
and successfully scanned 272,629 issues from 2,174 apps,
and finally mined 7,764 valid exception traces (6,588
unique) from 583 apps.

Automated GUI Testing Tools. To test F-Droid apps (4,560
recent release versions of 2,104 apps) and Google Play
apps (3,230 apps), we chose three state-of-the-art Android
app testing tools with different strategies: Monkey [28]
(random testing), Sapienz [11] (search-based testing), and
Stoat [12] (model-based testing). Each tool is configured
with default settings and each app is given 3 hours to thor-
oughly test on a single Android emulator. Each emulator
is configured with Jelly Bean Android OS (SDK 4.3.1, API
level 18). The evaluation is deployed on three physical
machines (64-bit Ubuntu/Linux 14.04). Each machine runs
10 emulators in parallel. Since Sapienz and Stoat leverage
code coverage to optimize test generation, we instru-
mented apps by Emma [34] or Jacoco [35] to collect cover-
age data.

This data collection phase took 6 months in total, and
we finally detected 13,271 crashes (9,722 unique) for
open-source apps, and 293,266 crashes (13,764 unique)
for commercial apps. During testing, when an app
crashes, the exception trace with bug-triggering inputs,
screenshots, detection time, etc, are recorded to help our
analysis.

Notably, for F-Droid apps, we find that the issue
repositories of GitHub and Google Code only contain
545 unique crashes that were reported with stack traces,
for the 4,560 recent release versions. These crashes only
accounts for 5.6 percent of those detected by testing
tools. This indicates these exception traces collected by
testing tools can indeed effectively complement the mined
exceptions.

2.2.3 Other Resource Collection

To help analysis, we also collected the most relevant posts
with the most votes on Stack Overflow by searching key
words with “Android”, exception types and exception mes-
sages. We recorded the creation time, number of votes,
number of answers, summary, etc. Finally, we mined 15,678
posts of various exceptions.

Fig. 2. An example of RuntimeException trace.

TABLE 1
Statistics of Collected Crashes

(“M.”: Monkey; “Sa.”: Sapienz; “St.”: Stoat)

1118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

2.3 Online App Developer Survey

2.3.1 Questionnaire Design

To gain more understanding and validate our own analysis
results on exception bugs, we conducted an online app
developer survey. This survey aims to solicit Android app
developers to share their experience of analyzing, testing,
reproducing and fixing exception bugs. Table 2 presents the
questionnaire of our study, which includes Q1�Q17. Specif-
ically, the survey is designed as two parts.

Part I: Background Information. We collected the back-
ground information of developers via Q1�Q4. By these
questions, we can filter invalid developers (e.g., the survey
only proceeds if the developer is aware of app exceptions),
and get the survey results of different developer groups
(e.g., groups of developers with different experience levels,
different app categories and countries).

Part II: App Exception Experiences and Practices. We col-
lected developers’ experiences and practices information
via Q5�Q17. We initially designed a number of questions
according to our research questions RQ1�RQ6, and sent
them to three experienced Android app developers (with 5-
year+ development experience) from Google, Tecent and
Alibaba, respectively, for early feedback. We later refined
these questions several rounds, and come up with Q5�Q17.
This design process aims to make the questions intuitive to
developers and concentrate on those questions that both
developers and researchers really concern.

For the developers who are aware of app exceptions, we
provided three examples for each exception category to make
sure the developers can fully understand the survey’s pur-
pose and related terminologies. Then, we presented Q5�Q17
to systematically understand the developers’ practices from

different perspectives. Specifically, we collected information
about (1) whether developers have encountered the three
exception categories via Q5 and Q6 (cf. Section 3.1.1), (2) how
developers understand framework exceptions via Q7�Q9 (cf.
Section 3.2.3), (3) how developers detect these exceptions in
practice via Q10�Q12 (cf. Section 3.3), (4) how developers
reproduce these exceptions via Q13�Q15 (cf. Section 3.5), and
(5) how developers fix these exceptions via Q16�Q17 (cf.
Section 3.6). In particular, some questions (e.g., Q5, Q6, Q7,
Q16) aim to validate our analysis results; some questions (e.g.,
Q9, Q12, Q13, Q14, Q15, Q17) aim to understand developers’
experiences and practices; some questions (e.g., Q7, Q9, Q12,
Q14) are given with some options (summarized and refined
according to our research experience and discussions with
three senior developers), and an “Others” option to allow any
additional comments.

2.3.2 Participants

To get sufficient number of responses from developers, we
solicited the participants from three channels. First, we con-
tacted 4,428 open-source app developers from GitHub and
1,226 commercial app developers from Google Play by
scrawling their emails. Second, we invited the app developers
in industry to distribute the survey within their companies
and networks. These contacts are from Google, Tencent,
Huawei, Alibaba and other IT companies. Third, we recruited
appdevelopers fromAmazonMechanical Turk [36] to partici-
pate in our survey. We paid 1.5 USD payment for each
approved submission. Finally, we received valid responses
from 135 professional app developers. Specifically, These
developers come from 32 different countries across four dif-
ferent continents (Asia, Europe, North America, Oceania),
and develop a diverse categories of apps (22 different catego-
ries). Among them, Business, Tools, Education, Lifestyle, Enter-
tainment are the most popular categories. 10 developers are
also involved in banking, insurance, financial apps, which
emphasize more on robustness and safety. Among these 135
participants, 25 developers (18.5 percent) have less than 1-
year experience, 67 developers (49.6 percent) have 1�3 years’
experience, 35 developers (25.9 percent) have 3�6 years’ expe-
rience, and 8 developers (6.0 percent) have more than 6 years’
experience. Most of the developers, i.e., 100 participants (81.5
percent) havemore than 1-year development experience.

3 EMPIRICAL STUDY

3.1 RQ1: Characteristics of Exceptions

3.1.1 Exception Category and Distribution

Based on the data collected in Section 2.2, Table 3 lists the
exception categories of open-source and closed-source
apps, and shows the number of the affected projects, occur-
rences, number of exception types and issue closing rate.
Since Google Play apps do not have publicly available issue
repositories, we only collected the closing rate for F-Droid
apps. We can see two facts: (1) Framework exceptions are
more pervasive and affect most of the apps. For example,
75.3 percent of open-source apps (revealed by the data of
GitHub & Google Code) and 84.5 percent of closed-source
apps (revealed by the data of testing tools) suffer from
framework exceptions. In terms of exception occurrences,

TABLE 2
Survey Questionnaire of Our Study

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1119

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

framework exceptions occupy more than half of all excep-
tions (50.8 percent for open-source apps revealed by
GitHub/Google Code data, 74.1 percent for closed-source
apps revealed by testing tools). This observation also con-
forms to the results of our survey question Q5 and Q6: 108
developers (80 percent), report they have encountered
framework exceptions, and 88 developers (57.8 percent)
report, in their experience, framework exception occupies
around 30% � 50% (reported by 35 developers) and 50% �
70% (reported by 43 developers) among the three exception
categories. (2) The closing rate of framework exceptions
is 53 percent, which is relatively lower than those of the
others (67 percent for application and 57 percent for library
exception).

3.1.2 Locations of Framework Exception Manifestation

To understand framework exceptions, we grouped them
by the class names of their signalers. In this way, we got
more than 110 groups. To distill our findings, we further
grouped these classes into 17 modules by following the
insights of popular Android development tutorials [37], [38].
In our context, the classes in one module achieve either one
general purpose or stand-alone functionality from devel-
opers’ perspective. For example, we grouped the classes that
manage the Android application model (e.g., Activities, Serv-
ices) into App Management (corresponding to android:app:�);
the classes that manage app data from content provider and
SQLite into Database (android:database:�); the classes that
provide basic OS services, message passing and inter-pro-
cess communication into OS (android:os:�). Other modules
include Widget (UI widgets), Graphics (graphics tools that

handle UI drawing), Fragment (one special visual element),
WindowsManager (managewindowdisplay), etc.

Fig. 3 shows the exception-proneness5 of Android frame-
work modules in terms of unique exception instances. We
find App Management, Database and Widget are the top 3
exception-prone modules. In App Management, the most
common exceptions are ActivityNotFound (due to no activity
is found to handle a given intent) and IllegalArgument
exceptions (due to improper registering/unregistering
BroadcastReceiver in the activity’s callbacks). Surprisingly,
although Activity, BroadcastReceiver and Service are the
basic building blocks of apps, developers make the most
number of mistakes on them.

As forDatabase,CursorIndexOutOfBounds,SQLiteException,
SQLiteDatabaseLocked account for themajority, which reflect
the various mistakes of using SQLite, the default database of
Android. As for the other modules, we find: (1) improper use
of ListViewwithAdapter throws a large number of IllegalState
exception (account for 47 percent) in Widget; (2) In OS,
SecurityException, IllegalArgument, NullPointer are the
most common ones. (3) improper use of Bitmap causes
OutOfMemoryError (48 percent) inGraphics; (4) improper han-
dling callbacks of Fragment brings IllegalState (85 percent) in
Fragment; improper showing or dismissing dialogs triggers
BadTokens (25 percent) inWindowManager.

3.1.3 Locations of Library Exception Manifestation

To investigate the library exception, we used the exception
data collected in Table 3. We grouped these exceptions by
the class names of their signalers, and integrated the excep-
tions that are thrown from the same library. We finally got
100+ exception-prone libraries. Fig. 4 shows the top 15
libraries in terms of number of unique exception occur-
rences. We find libcore, org.apache, and org.json are the three
most exception-prone libraries, which are in fact the most
basic ones and more frequently used than the others.

We further randomly selected 10 library exceptions from
each of these top 15 libraries, and analyzed the root causes.
We find that although these libraries provide different func-
tionalities, their exceptions still have some common root
causes. For example, most of exceptions are due to the mis-
use of APIs, e.g., giving incorrect parameter values/for-
mats, failing to validate specific resources (e.g., network)

TABLE 3
Statistics of the Exceptions Crawled From GitHub & Google Code and Collected by Testing Tools on F-Droid and Google Play Apps

(classified into Application Exception, Framework Exception, and Library Exception, respectively)

Fig. 3. Exception-proneness of Android framework modules in terms of
unique instances (M. = Management)

5. In our context, exception-proneness indicates how often develop-
ers may misuse specific framework or library functionalities, and does
not indicate the correctness of Android framework or libraries them-
selves. Specifically, these misuses manifest themselves as exceptions.

1120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

before use. Some exceptions are caused by the API incompati-
bility issues [39] between theAndroid SDK/appand the library
version, lack of specific hardware support or permissions [40].
Only a small portion of exceptions are due to the bugs of librar-
ies themselves. These observations reveal that library excep-
tions do share similarity with framework exceptions (detailed
in Section 3.2) in terms of common root causes. The Android
framework can be actually viewed as a basic “library” that
forms the building blocks of Android apps. In this paper, we
focus on investigating framework exceptions. Different apps may
use different libraries. Thus, giving a thorough analysis of
library exceptions is not possible in this work alone. Thus, we
leave it as future work. We have not given the manifestation
locations of application exceptions, since these exceptions can
be thrown from arbitrary locations at the app code level. We
inspected a number of application exceptions, but most of
them were generic programming errors. Thus, we do not give
further exploration on application exception in this study.

Answer to RQ1: Framework exceptions are more pervasive
than the other two exception categories, among which App
Management, Database and Widget are the three most excep-
tion-prone modules for developers. Library exceptions are simi-
lar with framework exceptions in the terms of root causes.

3.2 RQ2: Taxonomy of Framework Exceptions

This section characterizes the framework exceptions and
classifies them into different categories based on their root
causes. According to ISTQB [41], “Root cause is a source of
a defect such that if it is removed, the occurrence of the
defect type is decreased or removed.” Specifically, in our
context, we define root cause, from the view of developers, is
the initiating cause [42] of either a condition or a causal
chain that leads to a visible exception bug. Section 3.2.1
explains how we analyze and abstract these framework
exceptions into different categories. Section 3.2.2 illustrates
these categories with concrete examples.

3.2.1 Exception Analysis Method

First, we collected 8,243 framework exceptions and parti-
tioned them into different exception buckets. Each bucket con-
tains the exceptions that share the similar root cause.
Specifically,we used the exception type,message and signaler
to approximate the root cause. We also removed app specific

information in the exception message to scale the partition.
For example, the exception in Fig. 2 is labeled as
(NumberFormatException, “invalid double”, invalidReal). Here,
we removed the empty string from the original exception
message.We finally got 2,016 buckets, and the top 200 buckets
contain over 80 percent of all exceptions. The remaining buck-
ets have only 5 exceptions or fewer in each of them. Therefore,
we focus on the top 200 buckets.

Second,we randomly selected a number of exceptions from
each bucket, andused three complementary resources to facili-
tate root cause analysis: (1) Exception-Fix Repository. We set up
a repository that contains pairs of exceptions and their fixes. In
particular, (i) from 2,035 Android apps hosted on GitHub, we
mined 284 framework exception issues that are closed with
corresponding patches. To set up this mapping, we checked
each commit message by identifying the keywords “fix”/
“resolve”/“close” and the issue id. (ii) We manually checked
the remaining issues to include valid ones that are missed by
the keyword rules. We finally got 194 valid issues. We investi-
gated each exception trace and its patch to understand the root
causes. (2) Exception Instances Repository. From the 9,722 excep-
tions detected by testing tools (see Table 3), we filtered out
framework exceptions, and linked each of themwith its excep-
tion trace, source code, bug-triggering inputs and screenshots.
When an exception type under analysis is not included or has
very few instances in the exception-fix repository, we referred
to this repository to facilitate analysis by using available repro-
ducing information. (3) Technical Posts. For each exception
type,we referred to the posts from Stack Overflow collected in
Section 2.2.3 when needingmore information fromdevelopers
and validating our understanding.

Finally, we analyzed 86 distinct exception types, which cov-
ers 84.6 percent of all framework exceptions,6 and distilled 11
common fault categories. Specially,we abstracted the common
faults by the three steps. First, we read the official Android
documentation and popular developer tutorials to identify
and understand Android’s important mechanisms (e.g., activ-
ity lifecyle, single-GUI-threadmodel), components (e.g., activ-
ity, service, thread, database), and features (e.g., XML-based
UI design, API compatibility). Second, we inspected each
exception bug to understand its own root cause by using the
resources stated above. Third, we abstracted the root cause
into which mechanism it violates, or which component or fea-
ture it fails in. By these information, we classified an exception
into one specific fault category, which is named after specific
mechanism errors (i.e., Component Lifecycle Error, UI Update
Error, Framework Constraint Error), component usage errors
(i.e., Concurrency Error, DatabaseManagement Error), feature
errors (i.e., API Updates and Compatibility, Memory/Hard-
ware Error, XML Design Error) or generic errors (Resource
Not Found Error, API Parameter Error, Indexing Error).

3.2.2 Taxonomy

� Component Lifecycle Error. Each Android component has its
own lifecycle and is required to follow the prescribed life-
cycle paradigm, which defines how the component is

Fig. 4. Top 15 exception-prone libraries in terms of unique instances
based on the data in Table 3.

6. We found 13.2 percent of all exceptions are NullPointerException,
which are caused by null pointer dereferences and highly related to the
specific logic of each app. Thus, we did not inspect this generic excep-
tion type in our analysis.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1121

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

created, used and destroyed [43]. For example, Activity pro-
vides six core callbacks to allow developers to be aware of
its current state. If developers improperly handle the call-
backs or miss state-checking before some tasks, the app can
be fragile considering the complex environment interplay
(e.g., device rotation, network interruption). Bankdroid [44]
(Fig. 5) is a Swedish banking app. It utilizes a background
thread DataRetrieverTask to perform data retrieval, and
pops up a dialog to inform that the task is finished. How-
ever, if the user presses the back button on BankEditActivity
(which starts DataRetrieverTask), the app will crash when it
tries to pop up a dialog. The reason is that the developers
fail to check BankEditActivity’s state (in this case, destroyed)
after the background task is finished. The bug triggers a
BadTokenException and was fixed in revision 8b31cd3 [45].
Besides, Fragment [46], a reusable class implementing a por-
tion of Activity, has much more complex lifecycle. It pro-
vides 12 core callbacks to manage its state transition, which
makes lifecycle management more challenging, e.g., state
loss of Fragments, attachment loss from its activity.

� UI Update Error. Android enforces the single GUI thread
model. AUI thread is in charge of dispatching events and ren-
dering user interface. Each app owns one UI thread and
should offload intensive tasks to background threads to
ensure responsiveness. cgeo [47] (Fig. 6) is a popular full-
featured client for geocaching. When refreshing cacheList
(cacheList is associated with a ListView via an ArrayAdapter),
the developers query the database and substitute this list with
new results (via clearðÞ and addAllðÞ) in doInbackground.
However, the app crashes when it tries to refresh the list.
Because cacheList is maintained by the UI thread, which
internally checks the equality of item counts between ListView
and cacheList. But when a background thread modifies
cacheList, the checking will fail and an exception will be
thrown. The developer fixed it bymoving the refreshing oper-
ations into onPostExecute, which instead runs in the UI
thread (in revision d6b4e4d [48]).

� Framework Constraint Error. Android defines a number of
constrains when using its framework to build an app. For
example, Each Handler [49] instance must be associated with a
single thread and the message queue of this thread [50]. Otherwise,
a runtime exception will be thrown. Local-GSM-Backend [51]
(Fig. 7), a popular cell-tower based location lookup app,
uses a thread worker to monitor the changes of telephony
states via PhoneStateListener. However, the developers are
unaware that PhoneStateListener internally maintains a
Handler instance to deliver messages [52], which requires
setting up a message loop in worker. They later fixed it by
calling Looper#prepareðÞ (in revision 07e4a759 [53]). Other
constraints include performance consideration (avoid per-
forming network operations in the main UI thread [54], per-
mission consideration (require runtime permission grant for
dangerous permissions [55] since Android 6.0, otherwise
SecurityException) and etc.

� Concurrency Error. Android provides a number of asyn-
chronous programming constructs, e.g., AsyncTask, Thread,
to concurrently execute intensive tasks. However, improper
handling themmay cause data race [56] or resource leak [57],
and even app crashes. Nextcloud Notes [58], a cloud-based
notes-taking app, automatically synchronizes local and
remote notes. It attempts to re-open an already-closed data-
base, causing app crash [59]. The exception can be reproduced
by executing two steps repeatedly: (1) open any note from the
list; (2) close the note as quickly as possible by pressing back-
button. The app creates a new NoteSyncTask every time
when a note sync is requested, which connects with the
remote sever and updates the local database by calling
updateNoteðÞ. However, when there are multiple update
threads, such interleaving may happen and crash the app:
Thread A is executing the update, and Thread B gets the refer-
ence of the database; Thread A closes the database after the
task is finished, and Thread B tries to update the closed data-
base. The developers fixed this exception in revision
aa1a972 [60] by leaving the database unclosed (since
SQLiteDatabase already implemented thread-safe database
accessmechanism).

� Database Management Error. Android uses SQLite as its
default database.Many errors are caused by impropermanip-
ulating database columns/tables. Besides, improper data
migration for version updates is another major reason. Atara-
shii [61] (Fig. 8) is a popular app formanaging the reading and
watching of anime.When the user upgrades from v1.2 to v1.3,
the app crashes once started. The reason is that the callback
onCreateðÞ is only called if no old version database file exists,
so the new database table friends is not successfully created

Fig. 5. Bankdroid Issue #471 (Simplified).

Fig. 6. cgeo Issue #4569 (Simplified).

Fig. 7. Local-GSM-Backend Issue #2 (Simplified).

1122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

whenupgrading. Instead, onUpgradeðÞ is called, it crashes the
app because the table friends does not exist (fixed in revision
b311ec3 [62]).

� API Updates and Compatibility. Android features fast
API updates. For example, Service should be started explic-
itly since Android 5.0; the change of the comparison con-
tract of Collections#sortðÞ [63] since JDK 7 crashes many
apps due to the developers are unaware of this. It also has
device fragmentation issues, which were already investi-
gated by prior work [64], [65]. For example, problematic
deriver implementation, non-compliant OS customization,
and peculiar hardware configuration may cause compatibil-
ity issues.

� Memory/Hardware Error. Android devices have limited
resources (e.g., memory). Improper using of resources may
cause app crashes. For example, OutOfMemoryError occurs
if loading too large Bitmaps; RuntimeException appears
when MediaRecorder#stopðÞ is called without valid audio/
video data received.

� XML Design Error. Android supports UI design and
resource configuration in the form of XML files. Although
IDE tools have provided much convenience, mistakes still
exist, e.g., misspelling custom UI control names, forgetting
to escape special characters (e.g., “$”, “%”) in string texts,
failing to specify correct resources in colors:xml and
strings:xml.

� Resource Not Found Error. Android apps heavily use
external resources (e.g., databases, files, sockets, third-party
apps and libraries) to accomplish tasks. Developers make
this mistake when they fail to check their availability.

� API Parameter Error. Developers make such mistakes
when they fail to consider all possible input contents or
formats, and feed malformed inputs as the parameters of
APIs. For example, they directly use the results from
SharedPreference or database querieswithout any checking.

� Indexing Error. Indexing error happens when developers
access data, e.g., database, string, and array, with awrong index
value. One typical example is the CursorIndexOutOfBounds
exception caused by accessing database with incorrect cursor
index.

3.2.3 Understanding Root Causes From Developers

To further validate the results of root cause analysis, we
surveyed the developers with three questions. In the first
question (Q7), we aimed to check the correctness and com-
pleteness of root causes. We listed the 11 root causes

(accompaniedwith 2�3 issue examples) that can cause frame-
work exceptions, and asked developers to choose anyone that
he or she has ever encountered. We also provided an addi-
tional option “Others” for developers to fill in any root causes
we may have missed in our study. In the second question
(Q8), we aimed to understand how difficult the developers
may feel when resolving the exceptions with these root causes
(including the effort to inspect the exception message, under-
stand the root case, and locate the faulty code). We gave them
the three options, i.e., Difficult,Medium, and Easy, to rate each
root cause. In the third question (Q9), we aimed to understand
the difficulties of diagnosing root causes. We gave the four
options, i.e., understand exception type and message, get the repro-
duction steps (the user actions to trigger the exception), get the
bug environment (e.g., app version, device info), understand the
principles or usages of specific Android APIs, and an additional
option “Others”.

The responses of the first question support our root cause
analysis. All of the 11 root causes were encountered by the
developers. Specifically, Framework Constraint Error
(encountered by 62 developers (45.9 percent of all develop-
ers)), API Updates and Compatibility Error (60 developers
(44.4 percent)), Lifecyle Error (53 developers (39.3 percent)),
UI Update Error (53 developers (39.3 percent)) are the four
most commonly encountered errors reported by developers.
This finding conforms to our analysis results. In Table 4,
“#Occ.” denotes the exception occurrences of each root
cause among the 8,243 framework exceptions. We can see,
besides those “trivial” errors such as Resource-Not-Found
Error, Index Error and API Parameter Error, app developers
are indeed more likely to make Android specific errors, e.g.,
Lifecycle Error, Memory/Hardware Error, Framework Con-
straint Error. Some developers also mentioned some excep-
tion instances in the “Others” option. For example, one
developer mentioned improperly using of Android APIs,
which was categorized into the API Parameter Error cate-
gory; another developer mentioned not properly handling the
state of the listeners for sensors, which was categorized into
the Framework Constraint Error. Additionally, 42 develop-
ers (31.1 percent of all developers) mentioned Android sys-
tem errors (i.e., the bugs of Android framework itself) can
also lead to framework exceptions, which is indeed true but
out of our scope.

In the second question, we find developers have different
assessments on the difficulties of these root causes accord-
ing to their experience. Resource-Not-Found Error, API
Parameter Error, Index Error, and XML Error were the top
four most Easy errors rated by 50.4, 48.1, 44.4, 43 percent of
all developers, respectively, since these errors are usually
induced by trivial human mistakes and easy to fix. On the
other hand, Memory/Hardware Error, Concurrency Error,
and API Updates and Compatibility Error were the top
three most Difficult errors rated by 46.7, 34.8, 29.6 percent
developers, respectively, because these errors are notori-
ously difficult to debug [56], [66]. As for Database Manage-
ment Error, UI Update Error, Framework Constraint Error,
Lifecycle Error, almost half of participants, i.e., 51.8, 48.1,
46.7, and 46.7 percent of all developers, respectively, rated
them as Medium. This finding also conforms to our observa-
tion on Stack Overflow. In Table 4, “#S.O. posts” counts the
number of Stack Overflow posts on discussing these faults.

Fig. 8. Atarashii Issue #82 (Simplified)/.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1123

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

We can see developers indeed discuss more on Android
Framework Constraint Error and Lifecycle Error.

Fig. 9 shows the responses for Q9. We can see 96 develop-
ers (71.1 percent of all developers) reached the consensus that
themost difficult point is to get the reproduction steps, which
is quite crucial for diagnosing the root cause. The second dif-
ficult point, mentioned by 72 developers (53.3 percent), is to
get the bug environment. 57 developers (42.2 percent) con-
firmed the exception type and message sometimes also bring
confusions, while 45 developers (33.3 percent) reported some
specific Android APIs usages or features also affect the
understanding of root causes. We received 5 answers from
the “Others” option, but all of them can be grouped into the
previous four difficulties due to similarity. Thus, we believe
these four difficulties are themost typical ones.

Answer to RQ2: We distilled 11 fault categories of frame-
work exceptions. Developers make more mistakes on Lifecycle
Error, Memory/Hardware Error and Framework Constraint
Error. Developers feel it difficult to resolve Concurrency Error,
Memory/Hardware Error, and API Updates and Compatibil-
ity Error. Getting reproduction steps and bug environment are
the two most difficult problems when diagnosing root causes.

3.3 RQ3: Detecting Exception Bugs

This section investigates the testing practices against excep-
tion bugs from developers’ perspective. Different from prior
surveys [9], [10], [67] on how developers test Android apps,
our investigation focuses on how developers detect these
exception bugs that can lead to crashes. Specifically, we aim
to understand (1) the importance of detecting exception
bugs, (2) the commonly-used tools to detect exception bugs,
and (3) the unsatisfactory points of these tools. This section

motivates our deep investigation on these bug detection
tools in Section 3.4 (RQ4) and Section 3.5 (RQ5).

3.3.1 Tools for Detecting Exception Bugs

For the question Q10 “Do you think it is important to detect
(and resolve) exception bugs before releasing your apps?”, the
responses were very consistent: 56.3 percent developers
chose Very Important, 34.8 percent developers chose Impor-
tant, and 8.9 percent developers chose Normal. This result
indicates that detecting exception bugs is indeed one of top
priorities for developers.

In practice, many bug detection tools or frameworks are
available to help detect potential app exceptions. Fig. 10
shows the tools that are used by app developers to test or
check exception bugs (the responses of Q11). These tools
can be categorized into different groups by their principles.
For example, Monkey [28] is a random fuzzing tool that
tests apps by emitting a stream of random input events;
MonkeyRunner [68] is an API-based testing tool that tests
apps/devices from functional or framework level. Other
tools include unit/integration testing frameworks (e.g.,
Roboelectic, Espresso, UIAutomator), script-based testing
frameworks (e.g., Robotium, Appium), R&R (record &
replay)-based tools, cloud-based testing service (e.g., Google
Firebase, Microsoft Xamarin) and static checking tools (e.g.,
Findbugs, Android Lint, PMD, SonarQube).

We can seemanual testing is still themost preferableway of
86 developers (63.7 percent) to find exception bugs. Android
Lint is the most commonly-used tool by 45 developers
(33.3 percent) to automatically scan app bugs, which is more
popular than other static checking tools (i.e., FindBugs, PMD,
SonarQube). 74 developers (54.8 percent) preferred using
AndroidJunitRunner-based unit and integration testing frame-
works (e.g., Espresso and UIAutomator), and 32 developers
(23.7 percent) resorted to cloud-based testing services (e.g.,
Google Firebase). We also notice only a few (5 developers) use
automated GUI ripping tools. Sapienz [11] and Stoat [12], the
two state-of-the-art tools, were used. Different from all the
other tools, these GUI ripping tools are developed and main-
tained by researchers to achieve automated app testing.

3.3.2 Unsatisfactory Points of Existing Tools

In the survey, we further asked the developers Q12 “which
points do you think the tools you used are still not satisfactory for

TABLE 4
Statistics of 11 Common Fault Categories, Sorted by Closing

Rate (Collected From GitHub) in Descending Order
(“Occ.”: Occurrences, “S.O.”: Stack Overflow)

Fig. 9. Difficulties of root cause analysis.

Fig. 10. Tools/Frameworks used by developers.

1124 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

detecting exception bugs?”. From the responses, we have sev-
eral findings. (1) 67 developers (49.6 percent) complained
about the demanding human efforts required by manually
writing tests and setting up the testing environment. Manual
testing and those non-fully automatic testing methods (e.g.,
MonkeyRunner, AndroidJunitRunner-based and script-based
testing frameworks and R&R tools) all need manual efforts.
(2) The inefficiency of uncovering exception bugs is another
major concern of 64 developers (43.7 percent). They reported
some tools either cost too much testing time (e.g., R&R tools) or
miss bugs (e.g., Android Lint and other static checking tools).
(3) 56 developers (41.5 percent) complained that even if the tool
finds an exception, the generated test cannot guarantee to reproduce
the bug. This indicates the bug reproducibility problem of
mobile apps. Monkey and cloud-based testing service are the
two typical methods that have this issue. For example, aMon-
key test is a stream of low-level events (based on the device
screen coordinates), whichmay probably fail to reproduce the
bug if the screen size changes. Section 3.5 gives a deep investi-
gation of this problem. (4) 47 developers (34.8 percent) men-
tioned that the static checking tools (e.g., Lint) and R&R tools
can bring false alarms, i.e., the reported issues are not real bugs.
This issue usually wastes developers’ time for inspecting
them. (5) 43 developers (31.9 percent) reported that some tools
fail to consider various environment (e.g., screen rotation, net-
work stability, different geographic locations, heavy mem-
ory/CPU usage), which are quite crucial for testing the
usability and robustness of mobile apps. (6) 42 developers
(31.1 percent) hoped the testing or checking tools could gener-
ate tests for verification or generate more readable tests for
debugging. For example, some developers desired to get
more readable tests from Monkey. Developers have not pro-
vided other comments in the “Others” option.

Answer to RQ3: Most developers agree detecting exception
bugs is crucial, however, manual testing is still the most pref-
erable testing method. Although different bug detection tools
are used, developers still have unsatisfactory points, e.g., high
manual efforts, insufficient bug detection, low reproducibility
rate, many false positives, lack of considering environment etc.

3.4 RQ4: Auditing Automatic Bug Detection Tools

Informed by the study of RQ3, this section aims to investigate
the effectiveness of bug detection tools. As revealed by RQ3,
most of the bug detection tools require human assistance (e.g.,
writing tests). We note two groups of tools, i.e., dynamic test-
ing and static analysis tools, can fully automate app exception
checking. However, our previous investigation on the four

static analysis tools, i.e., Lint, FindBugs, PMD, SonarQube,
shows these tools are almost ineffective in detecting frame-
work exceptions due to the lack of specific checking rules [29].
Unfortunately, these tools have not provided handy APIs or
command line options to accept customized checking rules,
and require considerable code-level extensions. Thus, we
decided not to include them in this evaluation, otherwise the
results could be unfair. Section 5 discusses plausible ways of
improving static analysis tools. We do not consider the cloud-
based testing services as well, which are pay-by-use and not
convenient to conduct large-scale evaluation on thousands of
apps. Therefore, we only focus on dynamic testing tools, and
evaluate them on the framework exceptions categorized in
Section 3.2. We selected 3 state-of-the-art dynamic testing
tools, i.e., Monkey [28], Sapienz [11], and Stoat [12]. The sur-
vey in Section 3.3 shows these tools are used by a number of
real app developers (35 developers ever used). More impor-
tantly, recent studies [69], [70] show, these tools are proved to
be the most effective on both open-source and commercial
apps, and have found hundreds of previously-unknown
crash bugs inwell-tested apps.

We applied dynamic testing tools on each of 2,104 apps
with the same configurations in Section 2.2.2. We observed
that they could detect many framework exceptions. To
understand their abilities, we used two metrics.7 (1) detection
time (the time to detect an exception). Since one exception
may be found multiple times, we used the time of its first
occurrence. (2) Occurrences (how many times an exception is
detected during a specified duration). Figs. 11 and 12,
respectively, show the detection time and occurrences of
exceptions by each tool grouped by the fault categories.

From Fig. 11, we can see the abilities of these tools vary
across different fault categories. But we also note some obvi-
ous differences. For example, following the guidelines of
statistical tests [71], we used Mann-Whitney U test [72], a
non-parametric statistical hypothesis test for independent
samples, to compare the detection time of some specific
fault categories across three tools. We find Sapienz is better
at database errors (i.e., use significantly less testing time)
than Monkey (p-value=0.02, and standardized effect size is
medium (0.41)) and Stoat (p-value=0.05*10�4, and standard-
ized effect size is large (0.65)). One important reason is that
Sapienz implements a strategy, i.e., fill strings in EditTexts,
and then click “OK” instead of “Cancel” to maximize code

Fig. 11. Detection time of exceptions by each tool. Fig. 12. Occurrences of exceptions by each tool.

7. We do not present the results of trace length, since we find the
three tools cannot dump the exact trace that causes a crash. Instead,
they output the whole trace, which cannot reflect their detection
abilities.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1125

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

coverage, which is more likely to trigger database opera-
tions. Monkey and Sapienz, respectively, are better at life-
cycle errors than Stoat (p-values are, respectively, 0.002 and
0.001, and standardized effect sizes are, respectively,
medium (0.35) and small (0.25)). Because both Monkey and
Sapienz emit events very quickly without waiting for the
previous ones to take effect, e.g., open and quickly close an
activity without waiting for the activity finishes its task.

In addition, we note concurrency errors are non-trivial
for all three tools, i.e., Monkey, Sapienz and Stoat. But their
detection times are not significantly different according to
our statistical test. The medians of their detection times are,
respectively, 52, 69 and 58 minutes. In Fig. 12, the occur-
rences of API compatibility, Resource-Not-Found and XML
errors are much more than those of many other fault catego-
ries across three tools. It indicates these errors are easier to
be repeatedly detected. But, on the other hand, Concur-
rency, Lifecyle, UI update errors are more difficult to be
repeatedly detected, regardless of the testing strategies of
these tools. The main reason is that these errors contain
more non-determinism (interacting with threads).

After an in-depth inspection, we find that some Database
errors are hard to trigger because the app has to construct
an appropriate database state (e.g., create a table or insert a
row, and fill in specific data) as the precondition of the bug,
which may take a long time. As for Framework Constraint
Error, some exceptions require special environment inter-
play. For example, InstantiationException of Fragment can
only be triggered when a Fragment is destroyed and recre-
ated. To achieve this, a testing tool needs to change device
rotation at an appropriate timing (when the target Fragment
is on the screen), or pause and stop the app by switching to
another one, and stay there for a long time (let Android OS
kill the app), and then return back to the app. Concurrency
bugs (e.g., data race) are hard to trigger since they usually
need right timing of events.

Answer to RQ4: Dynamic testing tools are less effective in
detecting concurrency, database and lifecycle errors. Different
testing strategies have a big impact on the bug detection ability
against different types of framework exceptions. More effective
dynamic testing strategies are demanded to help detect frame-
work exceptions.

3.5 RQ5: Reproducibility of Exception Bugs

This section investigates the reproducibility of exception
bugs, which is crucial for bug diagnosing and fixing. Android
apps are event-centric programs and run in complex environ-
ment. Typically, the bug-triggering inputs are described as a

few reproducing steps (in the form of natural language by
humans or event sequences generated by testing tools) and
contextual conditions (e.g., device models, network status,
and other device settings [73]). Priorwork improves the repro-
ducibility of crash bugs by augmenting bug reports [74], [75],
[76], [77], translating a bug report (written in natural lan-
guage) into an executable UI test [78], [79], and leveraging
crowd-sourced monitoring [80]. However, to our knowledge,
no previous efforts has investigated the reproducibility of
exception bugs, from these two perspectives: (1) how do app
developers, and (2) how do automatic testing tools, perform
in reproducing bugs, which this sectionwill explore.

3.5.1 Perspective of App Developers

In our survey, we asked developers Q13 “In your experience,
given the reported reproducing steps, how much percentage of cases
in which you still cannot reproduce the crash exception?”. We gave
them the four options, i.e., < 10%, 10% � 30%, 30% � 50%,
and > 50%. Fig. 13 shows the responses. We find 82 develop-
ers (60.6%) reported they fail to reproduce 10% � 30% excep-
tion bugs, which were not ignorable. Further, 20 developers
(15 percent) could not successfully reproduce 30% � 50%
exception bugs, and 2 developers even could not reproduce
over 50 percent exceptions. 31 developers (22.8 percent) chose
the option < 10%. Further, from the responses of 43 senior
developers (with over 3 years working experience), we find
only 11 of them (25.6 percent) choose the option < 10%,
which indicates experienced developers also face difficulties
in reproducing bugs. Based on the above observations,
although developers in fact are quite familiar with their own
apps and implementations, we can see reproducing exception
bugs is still difficult for human developers, even if the repro-
duction steps are given.

We further asked developers Q14 “If you cannot reproduce
the crash exception, in your experience, which reasons may affect
the reproducibility?”. Five options are provided: (A) concur-
rency or asynchronous bugs (e.g., data race), (B) specific running
environment (e.g., low memory, external file access, usage of spe-
cific third-party library), (C) specific device models (e.g., frame-
work API version, OS customization), (D) specific system
configurations or settings (e.g., WiFi/4G, GPS on/off, enable/dis-
able specific developer options), and (E) Others (for any devel-
opers’ comments). The first four options were distilled from
three sources: (1) the app developers’ comments and discus-
sions from GitHub issue repositories when they resolve bug
reports, (2) our own experience of reproducing bugs during
our own research [29], [79], [81], and (3) the previous work
on bug reproduction [76], [78], [80].

Fig. 14 shows the results. 85 developers (63 percent)
selected (C). They indicated different API versions and

Fig. 13. Percentage of cases in failing to reproduce exceptions even if
the reproduction steps are given.

Fig. 14. Difficulties of reproducing exceptions.

1126 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

vendor models could affect the reproducibility because the
platform where the apps are developed is usually different
from the one where the apps are used. 82 developers
(60.7 percent) chose (B). They indicated some specific execu-
tion environment (e.g., heavy system load, external file
access, etc) may affect the reproducibility. The developers
felt difficult to record and restore the exact environment
when the app crashes. 53 developers (39.3 percent) selected
(A), since some concurrency bugs require specific thread
scheduling and strict timing [81]. 44 developers (32.6 per-
cent) reported missing “specific system configurations or
settings” in the reproduction steps could also affect the
reproducibility. For example, some bugs can only be mani-
fested with mobile data instead of WiFi.

We further asked app developers an open question Q15
“How do you improve the reproducibility of exception bugs dur-
ing your development?”. 12 app developers answered this
question. They added customized logging interfaces to gain
important running information, or used some off-the-shelf
crash reporting systems, e.g., ACRA [82], Google Firebase
Crashlytics [83], Splunk MINT [84], to collect raw analytics.
Specifically, these crash reporting systems (integrated as
app plugins) collect the contextual environment (e.g., SDK,
OS, app version, hardware model, memory usage), the
exception traces, the steps leading to crash (usually in the
form of screenshots) to facilitate crash analysis. However,
these developers still felt quite challenging to faithfully
reproducing exception bugs the users experience in vivo.

3.5.2 Perspective of Testing Tools

To investigate how testing tools perform in reproducing bugs,
we chose two Android GUI testing tools, i.e., Sapienz and
Stoat. As stated in Section 3.4, these two tools are now the
state-of-the-art in finding crash bugs. Specifically, to record &
replay the tests, we usedAndroidMonkey script [85] for Sapi-
enz, and UIAutomator script [86] for Stoat. When an app
crashes during the testing, we will record the exception trace,
and the corresponding crash-triggering test (i.e., the event
sequences that led to the crash).

To mitigate test flakiness [87], [88], [89], we deployed the
reproducing process on two physical machines, each of
which ran 6 emulators with the exact same environment
and configurations as the previous testing process in
Section 3.4. In addition, we ran each test for five times, and
recorded how many times the exception bugs could be trig-
gered. The machine state was cleared between each test run.
If the exactly same exception (with the same exception type
and stack trace) was triggered among the 5 runs, we
regarded the test as a valid one that can faithfully reproduce
the crash. In total, we replayed the tests of 4,009 and 3,535
exception bugs (including all the three exception categories)
found by Sapienz and Stoat, respectively. The whole

reproducing process took two months. Note that we have
not included Monkey in this investigation, since we find the
tests of Monkey are very flaky.8

Finally, Sapienz and Stoat triggered 15.7 percent (629/
4,009) and 28.2 percent (996/3,535) of all exception bugs,
respectively, by replaying the recorded tests. However,
among these triggered exceptions, only 279 exceptions of
Sapienz (6.9 percent, including 82 application exceptions, 169
framework exceptions, and 28 library exceptions) and 269
exceptions of Stoat (7.6 percent, including 189 application
exceptions, 76 framework exceptions, and 4 library excep-
tions), respectively, were faithfully reproduced. Obviously,
the reproducibility rate of exception bugs were quite low. In
the remaining cases that triggered exceptions, we find the
tests either triggered (1) the exceptions with different types, or
(2) the exceptions with the same types but different stack
traces. We further inspected a number of those “unfaithfully”
reproduced exceptions (i.e., the cases in (2)), and found some
of them actually triggered the same bugs but the stack traces
were slightly different from the expected ones.

Table 5 shows the numbers of reproducible exceptions
across the three exception categories, respectively. In the
parentheses, the percentage numbers indicate the ratios of
reproducible exceptions among all exceptions of that cate-
gory.We can see the reproducibility rates of these three excep-
tion categories do not have much differences, although Stoat
has lower rates on framework and library exceptions, com-
pared to Sapienz. Fig. 15 shows the reproducibility rates of the
11 root causes of framework exceptions. We can see that both
Stoat and Sapienz can reproduce more exceptions of
Resource-Not-Found, Memory/Hardware, and XML Layout
errors (over 10 percent), while neither of them has good per-
formance at Concurrency, API Update and Compatibility,
andDatabaseManagement errors.

Overall, the reproducibility of exception bugs is low for
both Sapienz and Stoat. We further investigated the reasons
behind, and observed the three main difficulties.

� Test dependency. Both Sapienz and Stoat only record the
current test that triggers the exception. However, many
exceptions can only be manifested under specific precon-
ditions, which need to be created by some previous tests.
As a result, only replaying the current test may fail the

TABLE 5
Statistics of Reproducible Exceptions Across the

Three Exception Categories

Tool #Total #Application #Framework #Library

Sapienz 279 82 (6.5%) 169 (7.2%) 28 (6.9%)
Stoat 269 189 (9.6%) 76 (5.3%) 4 (3.2%)

Fig. 15. Reproducibility rate of the 11 root causes of framework excep-
tions w.r.t. Sapienz and Stoat.

8. Our preliminary investigation reveals Monkey’s tests are much
more flaky than those of Stoat and Sapienz. We find most of Monkey’s
tests have thousands of events, while those of Sapienz and Stoat have
merely hundreds or tens of events, respectively.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1127

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

reproduction. Simply recording all the previous tests is inef-
fective, while selectively recording the necessary tests w.r.t.
the exception is nontrivial.

� Timing of Events. The execution timing of events are cru-
cial for manifesting some types of exceptions. For example,
concurrency bugs require critical timing of events, so as to
create specific thread scheduling [81]. In other scenarios,
due to the latency of network or computation, some UI
widgets may not be quickly ready for executing the next
event — causing the ignorance of the next event. Such igno-
rance may have negative effect on the execution of the
whole event sequence, leading to totally different execution
paths and results. Thus, to improve reproducibility, the tests
should contain timing control operations.

� Specific Running Environment or Configurations. Trigger-
ing some exceptions require specific running environment,
e.g., the existence of specific files on the SD card. For exam-
ple, one of the reasons for OutOfMemoryError is that the
app tries to load a large-size file from the SD card. Without
this file, such exceptions could not be reproduced. Some
exceptions can only be triggered under specific sytem con-
figurations, e.g., disabling network access or granting the
permission of using camera.

Answer to RQ5: Reproducing exceptions is difficult for
developers, and also challenging for automated testing tools.
Specific device models, specific execution environment, concur-
rency issues, specific system configurations are the four main
difficulties rated by developers. The reproducibility rates of
Sapienz and Stoat are quite low (only 6.9 and 7.6 percent,
respectively). Test dependency, timing of events, and specific
running environment are the three main observed challenges
for testing tools to faithfully reproduce exceptions.

3.6 RQ6: Fixing Patterns and Characteristics

This section uses the exception-fix repository constructed in
RQ2 (194 instances) to investigate the common practices of
developers to fix framework exceptions. We categorized
their fixing strategies by (1) the types of code modifications
(e.g., modify conditions, reorganize/move code, tweak
implementations); (2) the issue comments and patch
descriptions. We finally summarized five common fix pat-
terns, which can resolve over 90 percent of the issues in the
repository. We further presented Q16 to the developers,
and asked them to choose which fix practice they have ever
used to fix framework exceptions. Fig. 18 shows the
responses. We detail these fix practices as follows, which
are ordered by the popularity from the most to the least.

� Work in Right Callbacks. Inappropriate handling lifecycle
callbacks of app components (e.g., Activity, Fragment, Service)
can severely affect the robustness of apps. The common prac-
tice to fix such problems is to work in the right callback. For
example, in Activity, putting BroadcastReceiver’s register and
unregister into onStartðÞ and OnStopðÞ or onResumeðÞ and
OnPauseðÞ can avoid IllegalArgument; and committing a
FragmentTransaction before the activity’s state has been saved
(i.e., before the callback onSaveInstanceStateðÞ) can avoid
state loss exception [90], [91].

� Refine Conditional Checks. Missing checks on API para-
meters, activity states, index values, database versions,
external resources can introduce unexpected exceptions.
Developers usually fix them via adding appropriate condi-
tional checks. For example, Fig. 17a checks cursor index to fix
CursorIndexOutOfBound, Fig. 17b checks the state of the activ-
ity attached by a Fragment to fix IllegalState. Most exceptions
from Parameter Error, Indexing Error, Resource Error, Lifecycle
Error, andAPI Errorwere fixed by this strategy.

� Move Code into Correct Thread. Messing up UI and back-
ground threads may incur severe exceptions. The common
practice to fix such problems is to move related code into
correct threads. Fig. 16 fixes CalledFromWrongThread by
moving the code of modifying UI widgets back to the UI
thread (via Activity#runOnUiThreadðÞ) that creates them.
Similar fixes include moving the showings of Toast or
AlertDialog into the UI thread instead of the background
thread since they can only be processed in the Looper of the
UI thread [92], [93]. Additionally, moving extensive tasks
(e.g., network access, database query) into background
threads can resolve the exceptions NetworkOnMainThread
and “Application Not Responding” (ANR) [94].

� Change APIs or Design Patterns. Developers may fix an
exception by using other APIs to achieve similar functionali-

Fig. 16. Example fixes by moving code into correct thread.

Fig. 17. Example fixes by adding conditional checks.

Fig. 18. Popularity of common fix practices by developers.

1128 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

ties. For example, they will replace depreciated APIs with
newly imported ones. Sometimes, they directly change the
design pattern to avoid exceptions, which cannot be easily
fixed in the original design.

� Optimize data storage and manipulations. To resolve other
exceptions, developers have to carefully adjust implementa-
tion algorithms, e.g., optimize data storage and manipula-
tions. For example, to fix OutOfMemory caused by loading
Bitmap, the common practice is to optimize memory usage
by resizing the original bitmap [95]; to fix data race excep-
tions, the common practice is to adopt mutex locks (e.g.,
add synchronized to allow the execution of only one active
thread) or back up the shared data [96].

To further understand the characteristics of developer
fixes, we grouped these issues by their root causes, and com-
puted (1) the number of code lines9 the developers changed to
fix this issue (Fig. 19), and (2) the issue closing rate (column
“Closing Rate” in Table 4).We can see that the fixes for Param-
eter Error, Indexing Error, Resource Error, and Database Error
require fewer code changes (most patches are fewer than 20
lines). Because most of them can be fixed by refining condi-
tional checks. We can also note UI Update Error, API Updates
and Compatibility Error, Concurrency Error, Memory/Hardware
Error and XML Design Error require larger code patches.
Because fixing these issues usually require more manipula-
tions on UI components, API compatibility, threads, memory
andGUI design resources, respectively.

Further, by investigating the discussions and comments
of developers when fixing, we find three important reasons
that reveal the difficulties they face.

� Difficulty of Reproducing and Validation. One prominent
difficulty is how to reproduce exceptions and validate the
correctness of fixes [76]. Most users, testing tools or plat-
forms do not report complete reproducing steps/inputs
and other necessary information (e.g., exception trace,
device model, code version) to developers. In most bug
reports, we find only an exception trace is provided.

We surveyed the developers with Q17 “In your experience,
how much percentage of exceptions you are able to fix if you are only
provided with an exception trace?”. We find only 12 developers
(8.9 percent) reported they could fix over 70 percent exception
bugs (only three developers say they could fix more than 90
percent exceptions). 27 developers (20.0 percent) selected
10 � 30% exceptions, 54 developers (40.0 percent) selected

30 � 50% exceptions, and 39 developers (28.9 percent)
selected 50 � 70% exceptions, respectively. We can see fix-
ing exceptions could be rather difficult if only exception
traces are available. In other cases, reproducing and vali-
dating non-deterministic exceptions (e.g., concurrency
errors) could be harder. After fixing these issue, develop-
ers choose to leave the app users to validate before closing
the issue. As shown in Table 4, concurrency errors have
low fixing rate.

� Inexperience with Android System. A good understanding
of Android system is essential to correctly fix exceptions. As
the closing rates in Table 4 indicate, developers are more
confused by Memory/Hardware Error, Lifecycle Error,
Concurrency Error, and UI Update Error. We find some
developers use simple try-catch or compromising ways (e.g.,
use commitAllowingStateLoss to allow activity state loss) as
workarounds. However, such fixes are often fragile.

� Fast Evolving APIs and Features. Android is evolving fast.
As reported, on average, 115 API updates occur each
month [97]. Moreover, feature changes are continuously intro-
duced. However, these updates or changes may make apps
fragile when the platform they are deployed is different from
the one they were built; and the developers are confused when
such issues appear. For example, Android 6.0 introduces run-
timepermission grant— If an appuses dangerous permissions,
developers have to get permissions from users at runtime.
However, we find several developers choose to delay the fixing
since they have not fully understand this new feature.

Answer to RQ6: Working in the right callbacks, using cor-
rect thread types, refining conditional checks, changing APIs
or design patterns, optimizing data storage or manipulation
are the five common fix practices. When developers fix frame-
work exceptions, UI Update Error, API Updates and Compati-
bility Error, Concurrency Error, Memory/Hardware Error
and XML Design Error require larger code patches. Mean-
while, reproducing exceptions and validating the fixes, under-
standing different mechanisms in Android system and
adapting to fast-evolving Android APIs and features are the
three main difficulties that developers face during fixing.

4 THE BENCHMARK DROIDDEFECTS

Based on the data and analysis results in Section 3, this sec-
tion aims to construct a benchmark of exception bugs for
Android apps. This benchmark can facilitate follow-up
research (e.g., static fault analysis [98], fault localization [25],
program repair [26]), and help measure effectiveness of pro-
posed techniques in a controlled and systematic way.

However, constructing such a benchmark is non-trivial.
First, for Android apps, most bug-triggering tests are reported
in natural language, which describe the specific user actions to
manifest the defects. These tests cannot be directly executed
against the app to validate bugs [74]. Automatically translating
these tests to executable ones are extremely difficult [78], [79].
Second, Android system and its apps are evolving fast, and
use a diverse set of third-party libraries and different build sys-
tems (e.g., Gradle, Ant). These dependencies make it rather dif-
ficult to fully automate the build process, and usually involve
considerable human efforts to resolve issues. Third, GUI tests
can be notoriously flaky [87], [88], [89], which may not be able

Fig. 19. Fixing in terms of number of changed lines.

9. To reduce “noises”, we excluded comment lines (e.g., “//...”),
annotation lines (e.g., “@Override”), unrelated code changes (e.g.,
“import *.*”, the code for new features).

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1129

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

to deterministically manifest the defects. Due to these chal-
lenges, we cannot follow prior benchmarking methods [99],
[100] to automate the construction. To bridge the gap, we
made tremendous efforts to construct this benchmark.

4.1 Android App Defect Scenario

Our bug repository, DroidDefects, now only considers repro-
ducible, crash defects that are the bugs of apps themselves.
Other defects like Android system bugs [101], third-party
library bugs [102], device fragmentation bugs [64], and non-
crashing bugs (e.g., performance and energy bugs [103],
resource and memory leaks [57], [104], GUI failures [105],
[106], security bugs [107], [108]) are not considered. To char-
acterize an Android app bug in our context, we define the
defect scenario as follows, which includes

� A complete app project with one specific defect, which incor-
porates the source code, the dependency libraries and
the build scripts (e.g., Gradle or Ant). The project can be
successfully compiled into an apk file for running on an
emulator or a real device; and the defect can be deter-
ministically reproduced by one ormore tests.

� An exception stack trace, which is induced by the
defect. It provides certain clues of the defect (e.g., the
exception type, message, and the invoked methods).
In particular, it tracks the sequence of called methods
up to the point where the exception is thrown.

� A bug-triggering test and its environment, which can
deterministically manifest the defect of the app, given
the specific environment (e.g., API version, system con-
figuration). The test usually is composed of a sequence
of user actions and/or system events. The test can be
written in the form of natural language, JUnit-based
test scripts (e.g., Espresso [109], UIAutomator [86]) or
low-level events (e.g.,Monkey scripts [85]).

� Optionally, a developer-written repair or patch, which
fixes the faulty behavior w.r.t. the defect. It can be
used for understanding the defect.

4.2 Artifacts of DroidDefects

DroidDefects contains three main artifacts: (1) dataset of
reproducible defects, (2) dataset of ground-truth defects,
and (3) utility scripts.

Dataset of Reproducible Defects. This dataset now contains 33
reproducible defects from29Android apps, and covers 26 dis-
tinct exception types. This dataset helps researchers to under-
stand the characteristics of different app exceptions, and
enables detailed analysis. Although this dataset is relatively
small, but it covers different types of exception bugs from the
11 common root causes, and provideswith detailed reproduc-
ibility and root cause information. All these information has
never been considered in those previously constructed data-
set [26], [27], [69], [78]. We will continuously evolve and
enhance this dataset to include more exception instances,
although our experience indicate this process requires tre-
mendous manual efforts [79]. Section 4.3.1 gives the setup
details. For each defect, it provides:

� Source code of faulty app version, the complete source
code of the faulty app version with the build scripts
and the compiled apk file.

� Reproducible tests, the test cases that can deterministi-
callymanifest the defect (written in natural language).

� Exception trace, the exception trace w.r.t. the defect.
� Root cause analysis, the explanation of the defect.
In the current version of dataset, we have not yet

included non-deterministic defects (e.g., data race bugs [56],
[66]), since they require specific timing controls.

Dataset of Ground-Truth Defects. This dataset provides 3,696
distinct real faults from 821 apps, which cover all the 11 root
causes summarized in Section 3.2. For each fault, we provide
the app project source code, the executable apk file and the
exception trace. This dataset can be used to evaluate the effec-
tiveness of the fault detection, localization or repairing techni-
ques at the large-scale. Section 4.3.2 details the setup.

Utility Scripts. The utility scripts contain the APIs to run
existing tools, including dynamic testing tools (Monkey,
Sapienz, and Stoat) and static analysis tools (Lint and Find-
Bugs). This can ease the setup of evaluation. For example,
researchers can evaluate his/her newly-proposed testing
tool with the three state-of-the-art ones on our dataset via
calling dedicated APIs.

4.3 Benchmark Setup Details

Apps. To construct DroidDefects, we chose to use open-
source apps since the availability of source code enables
detailed analysis. We chose app subjects from F-Droid. As
discussed in Section 2.2.1, F-Droid apps are the representa-
tives of real-world apps and most of them are maintained
on GitHub.

4.3.1 Setup of Reproducible Defects

Selection Criteria. To construct a comprehensive dataset, we
used exception types as the main guidance. Specifically, we
purposely selected a number of typical Android app defects
to cover each exception type from each root cause group
(summarized in Section 3.2), respectively.

Source of Defects. We mainly collected Android app defects
from GitHub issue repositories, since these defects may be
reported with the reproduction steps and other information.
We also referred to the defects used by recent literature [26],
[78]. We have not considered the defects from testing tools in
Section 3.4, since as revealed in Section 3.5, the reproducibility
rates of generated tests are very low.

Manual Validation. To collect valid defects from GitHub
issue repositories, we reused the dataset of app exceptions
collected in Section 2.2.2. We used the keywords “crash/
stop”, “reproduce”, “replicate”, “version” to further filter
the exceptions, and only considered the issues submitted in
recent years. We constrained our focus on these keywords
since we hoped to focus on those fail-stop defects10 with
clear reproduction steps on the specific app versions, which
are quite important for manual validation and reproduc-
tion. We selected recent issues by considering Android
apps could have outdated dependencies. Finally, we got
448 issues. However, by randomly inspecting some filtered
issues, we note there were still many invalid ones (e.g., the

10. Note that not all exceptions can trigger app crashes, e.g., caught
exceptions or system warning exceptions (e.g., the WindowLeaked
exception only gives resource-leak warning without failing apps).

1130 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

reproduction steps are incomplete, the keyword “version”
did not match with the “app version”, etc).

Next, three authors of this paper spent one month to
manually validate and reproduce these issues. Specifically,
we worked in the following steps. First, we randomly sam-
pled some candidate issues for each exception type. Second,
to get the faulty code version Vbug, we either (1) checked out
the code commit right preceding the fixed version Vfix if the
bug fix is explicitly mentioned, or (2) checked out Vbug

according to the specified app version or the issue submis-
sion time. Third, we built the app into an executable apk via
build scripts or Android Studio. Last, we installed the app
on an Android device to replay the described reproduction
steps and observe whether the exact exception will be
thrown. In our experience, various reasons may fail the
above reproduction process. For example, the compilation
may fail due to outdated dependencies; the exception can-
not be manifested due to incomplete reproduction steps or
environment issues. Therefore, if we could not successfully
reproduce an exception within one hour, we resorted to the
other candidates. Finally, we got 33 reproducible defects.

4.3.2 Setup of Ground-Truth Defects

To construct a large dataset of ground-truth defects, we lever-
aged the exceptions revealed by dynamic testing tools in
Section 3.4. Table 6 shows the statistics of this datasetw.r.t. the
root causes of framework exceptions. In total, we collected
3,696 framework exceptions across 11 common root causes,
whichwere discovered in 821 uniqueAndroid apps. To facili-
tate the use, we characterized the complexity of each faulty
app by number of lines, number ofmethods, number of activi-
ties, and number of classes, and the diversity by the app cate-
gory. Finally, we got 3,696 ground-truth defects.

5 APPLICATIONS OF OUR STUDY

5.1 Improving Exception Detection

Dynamic Testing. Enhancing testing tools to detect specific
errors is very important. For example, (1) Generate meaningful
as well as corner-case inputs to reveal parameter errors. We find
random strings with specific formats or characters are very
likely to reveal unexpected crashes. For instance, Monkey

detectsmoreSQLiteExceptions than the other tools since it can
generate strings with special characters like “”” and “%” by
randomly hitting the keyboard.When these strings are used in
SQL statements, they can fail SQL queries without escaping.
(2) Enforce environment interplay to reveal lifecycle, concurrency
and UI update errors. We find some special actions, e.g., change
device orientations, start an activity and quickly return back
without waiting it to finish, put the app at background for a
long time (by calling another app) and return back to it again,
can affect an app’s internal states and its component lifecycle.
Therefore, these actions can be interleaved with normal UI
actions to effectively check robustness. (3) Consider different app
and SDK versions to detect regression errors. We find app updates
may introduce unexpected errors. For example, as shown in
Fig. 8, the changes of database scheme can crash the new ver-
sion since the developers havenot carefullymanageddatabase
migration from the old version. (4) More advanced testing crite-
ria [110], [111] are desired to derive effective tests.

Static Analysis. Incorporating new checking rules into static
analysis tools to enhance their abilities is highly valuable. We
find FindBugs and SonarQube have not included any
Android-specific checking rules, while PMD defines three
rules [112], although these tools all support checking Android
projects. Lint defines 281 Android rules [113] but only covers
a small portion of framework-specific bugs [29]. However,
there are plausible ways to improving these tools. For exam-
ple, to warn the potential crash in Fig. 7, static analysis can
check whether the task running in the thread uses Handler to
dispatchmessages, if it uses, Looper#prepareðÞmust be called
at the beginning of Thread#runðÞ; to warn the potential crash
in Fig. 5, static analysis can check whether there is an appro-
priate checking on activity state before showing a dialog from
a background thread. In fact, some work [98] already imple-
ments the lifecycle checking in Lint.

Demonstration of Usefulness. We implemented Stoat+, an
enhancement version of Stoat [12] with two new strategies.
These two strategies include eight enhancement cases: (1) five
specific input formats (e.g., empty string, lengthy string, null)
or characters (e.g., “””, “%”) to fill in EditTexts or Intent’s
fields; (2) three specific types of environment-interplay actions
mentioned in Section 5.1. These two strategies were imple-
mented in theMCMC sampling phase of Stoat, and randomly
inject these specific events into normal GUI tests to improve
fault detection ablitiy (see Section 4.4 in [12]). We applied
Stoat+ on dozens ofmost popular apps (e.g., Facebook, Gmail,
Google+,WeChat) fromGoogle Play, and each appwas tested
for ten hours on a Google Pixel 3 device. At last, we success-
fully detected 3 previously unknown bugs in Gmail (one
parameter error) and Google+ (one UI update error and one
lifecycle error). All of these bugs were detected in the latest
versions at the time of our study, and have been reported to
Google and got confirmed. The detailed issue reports were
available at the Stoat’s website [114]. However, these bugs
were not found by Monkey and Sapienz, while other testing
tools, e.g., CrashScope [115] and AppDoctor [116], only con-
sider 2 and 3 of these 8 enhancement cases, respectively.

5.2 Enabling Exception Localization

We find developers usually take days to fix a framework
exception. Thus, automatically locating faulty code and

TABLE 6
Statistics of Ground-Truth Defects w.r.t. 11 Common Root

Causes of Framework Exceptions

Category (Name for short) #Defects #Apps

API Updates and Compatibility (API) 33 16
XML Layout Error (XML) 66 30
API Parameter Error (Parameter) 675 181
Framework Constraint Error (Constraint) 168 95
Index Error (Index) 551 183
Database Management Error (Database) 51 15
Resource-Not-Found Error (Resource) 1,238 286
UI Update Error (UI) 170 53
Concurrency Error (Concurrency) 241 71
Component Lifecycle Error (Lifecycle) 301 160
Memory/Hardware Error (Memory) 123 63
Others (Java-specific errors) 79 40

Total 3,696 821

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1131

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

proposing possible fixes are highly desirable. Our study can
shed light on this goal.

Demonstration of Usefulness. We built a framework excep-
tion localization tool, ExLocator, based on Soot [117], which
takes as input an APK file and an exception trace, and out-
puts a report that explains the root cause of this exception.
It currently supports 5 exception types from UI Update,
Lifecycle, Index, and Framework Constraint errors. In
detail, it first extracts method call sequences and exception
information from the exception trace, and classifies the
exception into one of our summarized fault categories
according to the root exception and signalers. As shown in
Section 3.2, these specific exception types have obvious fault
patterns (e.g., incorrect handling background threads).
Exlocator utilizes these patterns and data-/control-flow
analysis to locate the root cause. More technical details can
be found in our descendant tool APEchecker [81], which
automatically localizes UI update errors. The report gives
the lines or methods that causes the exception, the descrip-
tion of the root cause and possible fixing solutions, and
closely related Stack Overflow posts. From our benchmark
DroidDefects, we randomly selected 6 exception cases for
each of five supported exception types. At last, we got 30
exception cases in total. ExLocator was successfully able to
locate 28 exceptions out of 30 (93.3 percent precision) by
comparing with the patches by developers. By incorporat-
ing additional context information from Android frame-
work (e.g., which framework classes use Handler), our tool
successfully identified the root causes of the remaining two
cases. However, all previous fault localization work [25],
[118], [119], [120] can only handle generic exception types.

5.3 Enhancing Mutation Testing

Mutation testing is a widely-adopted technique to assess the
fault-detection ability of a test suite, as well as to guide test
case generation and prioritization [121]. One crucial step of
applying mutation testing in a new application domain (e.g.,
Android apps) is to design specificmutation operators, which
can represent typical programming faults, in addition to those
generic mutation operators. For example, a number of muta-
tion testing tools for Java programs (e.g., Pit [122] and
Major [123]) are available, but they do not include any
Android-specific mutation operators. As a result, they may
generate trivial mutants that may directly crash themselves
when startup or cannot be complied into executables.

We identified 75 different exception instances (with
unique exception types and messages) from the data in
Table 4. But we find existing mutation operators [124], [125],
[126], [127], [128] designed for Android apps only cover a
few of these instances. Specifically, only 4 mutation operators
(i.e., Intent Playload Replacement, Actvity/Service Lifecycle
Method Deletion, Fail on Back) of Deng et al.’s 17 opera-
tors [125], [126] may help reveal some specific framework
exceptions (e.g., lifecycle-related issues). Their remaining
operators focus on detecting UI, event handling and energy
failures instead of fatal crashes. MDroid+ [127] proposes 38
operators, but can only cover 8 exception instances in our
study. Based on the results of our study, researchers could
add more mutation operators. For example, we can delete
Activity state checking statements from those methods

running in background threads to inject Lifecycle errors (see
Fig. 5); we can also remove specific statements (e.g., app state
storage) from some Fragment’s lifecycle callbacks (e.g.,
onSaveInstanceState) to inject state loss errors [90], [91]; we
can also change some data access from UI threads to back-
ground threads to inject UI update errors (see Fig. 6). We can
also inject many Framework constraint errors (e.g., see the
example in Fig. 7). All these generated mutants can be suc-
cessfully compiled and only detectable at runtime with spe-
cific GUI tests. Thus, more mutation operators can be
introduced for framework exception types to improve muta-
tion testing of Android apps.

6 DISCUSSION

6.1 Lessons Learned

We have learned several lessons from this study. We sum-
marize them to inspire practitioners and researchers, and
motivate future work.

Automatically Reproducing Exceptions Need More Research
Efforts. Reproducing exceptions is very important for bug
diagnosing and fixing. First, in practice, only (incomplete)
reproduction steps (written in natural language) or exception
traces are available to developers. Although some tools [75],
[78], [79], [115] have been developed to improve or automate
bug reproduction, their effectiveness and usability are still
limited. CrashScope [115] improves the reproducibility by
recording more contextual information of bug-triggering
event sequences. However, it still cannot handle exception
bugs caused by inter-app communications. Yukusu [78] trans-
lates a bug report written in natural language into executable
test cases. However, according to our replication of their eval-
uation, we find Yukusu still focuses on creating test cases
instead of reproducing the expected bugs. RecDroid [79] is a
further step of Yukusu, which aims to automatically repro-
duce the expected crash bugs from a bug report. However, it
cannot cover all types of exception bugs (e.g., concurrency
bugs) and its ability is limited by its predefined grammar pat-
terns. Thus, how to effectively and faithfully reproducing the
intended bug described in a bug report still requires more
research efforts. Second, how to reproduce an exception with
a short event trace is also important [129], [130]. Existing test-
ing tools (e.g., Monkey and Sapienz) usually generate quite
long traces which are flaky and not suitable for reproducing.
However, when applied for GUI programs, existing test
reduction techniques, e.g., delta debugging [129], [131], still
have high performance overhead. Thus, how to efficiently
reduce bug-triggering tests is still an open problem. Third, if
only an exception trace is available, effective techniques for
locating faulty code and then generating the bug-triggering
tests at the UI level are quite useful for bug reproduction.
However, existing fault localization techniques for Android
apps [25] are far from mature, and limited to trivial types of
exceptions. Little research efforts has been done to link the
app logic code with UI widgets for interactive debugging of
Android apps. This deservesmore research efforts.

Effective Bug Detection Tools are in Great Demand. Both
dynamic and static bug detection techniques are needed to
effectively reveal as many exception bugs as possible before
app release. First, Android apps could be complicated and
have different types of bugs, and different testing strategies

1132 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

could have very different performance in detecting excep-
tions. Thus, one plausible idea is to combine the strengthens
of these strategies together, e.g., combining random testing
and systematic GUI exploration [70], or using static analysis
to guide dynamic testing [81]. Second, static analysis tools
could include more specific rules to check potential bugs
and keep update with the evolution of Android system. The
rules that are closely related to Android programming
errors (e.g., Component Lifecycle Error, Framework Con-
straint Error, UI Update Error) could have higher fault
detection abilities. Third, bug detection tools should
improve their usability. For example, dynamic testing tools
should provide mechanisms to automatically bypass user
logins or accept user-provided account information, other-
wise, they are likely trapped at the login pages. Other tool
features are also very useful, e.g., leveraging user-provided
oracles, generating more readable and less flaky tests,
reducing number of false positives. These can improve bug
detection and reproduction, and save debugging efforts.

Better Documentation and Technical Tutorials are Needed. A
comprehensive and intuitive technical documentation is
very important for developers to quickly understand
Android system and avoid programming errors. However,
during this study, we find this issue is still prominent. For
example, we notice developers are more capable of fixing
trivial errors (e.g., Parameter Error, Index Error) according
to their Java programming knowledge, but takes more time
and needs more discussions when fixing such Android-spe-
cific issues as Component Lifecycle, Memory/Hardware,
Concurrency, and UI Update errors. However, some sophis-
ticated mechanism are not well documented in the official
Android documentation. One typical example is about the
state loss issue when handling Activity and Fragment life-
cycle [90]. Junior developers have to refer to those technical
posts from experienced developers.

Second, we find some developers cannot quickly get
familiar with the newly-introduced features. We observe
some developers chose to delay the upgrading of their apps
to new Android platforms. For example, Android introdu-
ces runtime permission granting since API 23; and supports
Kotlin since API 27. Better documentation and training
courses should be continuously updated to help developers
gain more understanding of new mechanisms, and let them
know the feature evolution of Android system.

6.2 Threats to Validity

External Validity. First, our selected apps may not be the rep-
resentatives of all possible real-world apps. To counter this,
we collected all 2,486 apps from F-Droid at the time of our
study, which is the largest database of open-source apps,
and covers diverse app categories. We also collected a
diverse set of 3,230 closed-source Google Play apps as sub-
jects. Second, our mined exceptions may not include all pos-
sible exceptions. To counter this, we mined the issue
repositories of 2,174 apps on GitHub and Google Code; and
applied testing tools on 5,334 unique apps, which leads to
total 30,009 exceptions. To our knowledge, this is the largest
study for analyzing Android app exceptions.

Internal Validity. First, our exception analysis may not be
absolutely complete and correct. For completeness, (i) we

investigated 8,243 framework exceptions, and carefully
inspected all common exception types. (ii) We surveyed pre-
vious work [11], [12], [15], [19], [21], [31], [56], [98], [116],
[132], [133], [134], [135] that reported exceptions, and
observed all their exception types and patterns were covered
by our study. For correctness, we cross-validated our analy-
sis on each exception type, and also referred to the patches
from developers and Stack Overflow posts. More impor-
tantly, we surveyed 135 professional app developers to gain
more understandings and insights to validate our analysis.
Second, the classification of app exceptions (Section 3.1) and
the taxonomy of root causes (Section 3.2) may be subjective.
This may affect the validity of some analysis results. To
counter this, we carefully analyzed these exceptions based
on our understanding, and the knowledge from Android
documentation and development tutorials.

Construct Validity. The online developer survey may have
some limitations. The designed questions may not fully cover
all aspects, and affect the validity of our conclusions drawn
from this survey. But we tried our best to design appropriate
questions, and refined these questions according to early feed-
back from three experienced Android developers and our
own long-time research experience of inspecting developers
activities on GitHub. In the survey, we also provided some
questions with open options to receive any comments from
developers, which complemented our provided options. Our
constructed benchmarkmay also subject to construct validity.
To counter this, we manually verified all reproducible cases.
For ground-truth cases, we also automatically checked the
validity of exception traces.

7 RELATED WORK

A number of fault studies exist in the literature for Android
apps from different perspectives, e.g., performance [103],
energy [136], compatibility issues [64], [137], permission
issues [138], memory leak [139], [140], GUI failures [105],
[106], [141], resource usage [57], [104], API stability [97],
security [142], [143], [144] etc. However, none of these work
particularly focuses on app crashes and exceptions, which
is the main goal we target at in this work.

Hu et al. [132] make one of the first attempts to analyze
functional bugs for Android apps. They manually classify 8
bug types (e.g., Activity errors, Event errors, Type errors) from
158 bug reports of 10 apps. Other efforts include [31], [134],
which however have different goals compared to our study:
Coelho et al. [31] analyze exception traces to investigate the
bug hazards of exception-handling code (e.g., cross-type
exception wrapping), Zaeem et al. [134] study 106 bugs of 13
apps to generate testing oracles for a specific set of bug types.
However, none of them give a large-scale and comprehensive
analysis in this direction, and the validity of their conclusions
is also unclear.

Linares-V�asquez et al. [127] recently also analyze a large
number of android app bugs. But our study is significantly
different from theirs. First, we focus on analyzing crash
bugs caused by framework exceptions, while they focus on
designing mutation operators to evaluate the effectiveness
of test suites. Second, we give a much more comprehensive,
deep analysis on the root causes, exception detection, repro-
duction and fixing.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1133

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

Based on our dataset and analysis results, we constructed
the benchmark DroidDefects. Although prior work also con-
struct some benchmarks of Android app faults, our bench-
mark is more systematic in the number of faults, exception
types and root causes. For example, AndroTest [69], [145] is
a dataset of 68 apps collected from early research work [13],
[15], [18], [133], to evaluate the fault detection abilities of
Android app testing tools. But these subjects are randomly
selected from F-Droid without any specific selection criteria.
Many of these apps are quite out-of-date and error-prone.
DroidBugs [27], [146], the only available dataset for auto-
mated program repair of Android apps, merely contains 13
bugs from 5 apps. This dataset is introductory, and has not
provided any information about bug types.

Researchers have also constructed benchmarks for other
bug types. MUBench [147] is a benchmark of 89 API misuses
mined from 33 real-world projects, including Android.
AppLeak [148] is a benchmark of 40 resource leak bugs in
Android apps, which contains the faulty apps, bug-fixed
versions (when available), and reproducible test cases.
Mostafa et al. [149] study behavioral backward incompatibili-
ties of Java software libraries, including Android. They
archived a number of backward incompatibility faults. In con-
trast, our work focus on exception bugs, and covers diverse
categories and root causes.

8 CONCLUSION

In this paper, we conducted the first large-scale, comprehen-
sive study to understand framework exceptions of Android
apps, which account for the majority of app exception bugs.
Specifically, we investigated framework exceptions from sev-
eral perspectives, including exception characteristics, root
causes, testing practice of developers, abilities of existing bug
detection tools, exception reproducibility and common fix
practices. To validate and generalize our analysis results, we
considered both open-source and commercial apps, and fur-
ther conducted an online developer survey to gain more
insights from the developers’ knowledge and experiences.
Through this study, we constructed DroidDefects, the first
comprehensive and largest benchmark of exception bugs, to
enable follow-up research; and built two prototype tools,
Stoat+ and ExLocator, to demonstrate the usefulness of our
findings. We pointed a number of research directions that
deservemore research efforts.

ACKNOWLEDGMENTS

We would like to thank the constructive and valuable com-
ments from the TSE reviewers. We also appreciate the
Android app developers who participate in our online sur-
vey, and share us many experience and feedback in this
field. This work was partially supported by SNSF Spark
Project CRSK-2_190302; partially supported by NSFC Proj-
ect 61632005 and 61532019; partially supported by the
National Research Foundation, Prime Ministers Office,
Singapore under its National Cybersecurity R&D Program
(Award No. NRF2018NCR-NCR005-0001), the Singapore
National Research Foundation under NCR Award Number
NRF2018NCR-NSOE004-0001, and NRF Investigatorship
NRFI06-2020-0022.

REFERENCES

[1] “Number of Android applications,” 2018. [Online]. Available:
http://www.appbrain.com/stats/number-of-android-apps

[2] S. Chen et al., “Storydroid: Automated generation of storyboard
for android apps,” in Proc. 41st Int. Conf. Softw. Eng., 2019,
pp. 596–607.

[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?” IEEE Softw., vol. 32, no. 3,
pp. 70–77, May/Jun 2015.

[4] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proc. 10th ACM/
IEEE Int. Symp. Empir. Softw. Eng. Meas., 2016, pp. 29:1–29:10.

[5] “Robotium,” 2020. [Online]. Available: http://www.robotium.org
[6] “Appium,” 2020. [Online]. Available: http://appium.io/
[7] “Android Lint,” 2020. [Online]. Available: https://developer.

android.com/studio/write/lint.html
[8] “FindBugs,” 2020. [Online]. Available: http://findbugs.

sourceforge.net/
[9] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and

D. Lo, “Understanding the test automation culture of app devel-
opers,” in Proc. IEEE 8th Int. Conf. Softw. Testing Verification Vali-
dation, 2015, pp. 1–10.

[10] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk,
“How developers detect and fix performance bottlenecks in
android apps,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2015, pp. 352–361.

[11] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective auto-
mated testing for android applications,” in Proc. 25th Int. Symp.
Softw. Testing Anal., 2016, pp. 94–105.

[12] T. Su et al., “Guided, stochastic model-based GUI testing of
android apps,” in Proc. 11th Joint Meeting Foundations Softw. Eng.,
2017, pp. 245–256.

[13] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated con-
colic testing of smartphone apps,” in Proc. ACM SIGSOFT 20th
Int. Symp. Foundations Softw. Eng., 2012, Art. no. 59.

[14] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying
android applications using java pathfinder,” SIGSOFT Softw.
Eng. Notes, vol. 37, no. 6, pp. 1–5, 2012.

[15] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for Android apps,” in Proc. 9th Joint Meeting
Foundations Softw. Eng., 2013, pp. 224–234.

[16] T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of Android apps,” in Proc. ACM SIGPLAN
Int. Conf. Object Oriented Program. Syst. Languages Appl., 2013,
pp. 641–660.

[17] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-
mated GUI-model generation of mobile applications,” in Proc. 16th
Int. Conf. Fundam. Approaches Softw. Eng., 2013, pp. 250–265.

[18] W. Choi, G. C. Necula, and K. Sen, “Guided GUI testing of
Android apps with minimal restart and approximate learning,”
in Proc. ACM SIGPLAN Int. Conf. Object Oriented Program. Syst.
Languages Appl., 2013, pp. 623–640.

[19] R.Mahmood, N.Mirzaei, and S.Malek, “EvoDroid: Segmented evo-
lutionary testing of Android apps,” inProc. ACMSIGPLAN Int. Conf.
Object Oriented Program. Syst. Languages Appl., 2014, pp. 599–609.

[20] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan,
“PUMA: Programmable UI-automation for large-scale dynamic
analysis of mobile apps,” in Proc. 12th Annu. Int. Conf. Mobile
Syst. Appl. Services, 2014, pp. 204–217.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and
A. M. Memon, “MobiGUITAR: Automated model-based testing
of mobile apps,” IEEE Softw., vol. 32, no. 5, pp. 53–59, Sept.-Oct.
2015.

[22] T. Su, “FSMdroid: Guided GUI testing of android apps,” in Proc.
IEEE/ACM38th Int. Conf. Softw. Eng. Companion, 2016, pp. 689–691.

[23] T. Gu et al., “Aimdroid: Activity-insulated multi-level automated
testing for android applications,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2017, pp. 103–114.

[24] W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI testing
for android applications,” in Proc. 32nd IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2017, pp. 27–37.

[25] H. Mirzaei and A. Heydarnoori, “Exception fault localization in
android applications,” in Proc. 2nd ACM Int. Conf. Mobile Softw.
Eng. Syst., 2015, pp. 156–157.

[26] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
crashes in android apps,” in Proc. 40th Int. Conf. Softw. Eng., 2018,
pp. 187–198.

1134 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

http://www.appbrain.com/stats/number-of-android-apps
http://www.robotium.org
http://appium.io/
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/

[27] L. Azevedo, A. Dantas, and C. G. Camilo-Junior, “Droidbugs: An
android benchmark for automatic program repair,” CoRR,
vol. abs/1809.07353, 2018. [Online]. Available: http://arxiv.
org/abs/1809.07353

[28] “Monkey,” 2020. [Online]. Available: http://developer.android.
com/tools/help/monkey.html

[29] L. Fan et al., “Large-scale analysis of framework-specific excep-
tions in android apps,” in Proc. 40th Int. Conf. Softw. Eng., 2018,
pp. 408–419.

[30] “Android developers documentation,” 2020. [Online]. Available:
https://developer.android.com/reference/packages.html

[31] R. Coelho, L. Almeida, G. Gousios, and A. van Deursen,
“Unveiling exception handling bug hazards in android based on
github and google code issues,” in Proc. 12th Working Conf. Min-
ing Softw. Repositories, 2015, pp. 134–145.

[32] “F-Droid,” 2020. [Online]. Available: https://f-droid.org/
[33] “Google play store,” 2020. [Online]. Available: https://play.

google.com/store/apps
[34] “EMMA,” 2020. [Online]. Available: http://emma.sourceforge.net/
[35] “JaCoCo,” 2020. [Online]. Available: http://www.eclemma.org/

jacoco/
[36] “Amazon mechanical turk,” 2020. [Online]. Available: https://

www.mturk.com
[37] “CodePath android cliffnotes,” 2020. [Online]. Available: http://

guides.codepath.com/android
[38] “Advanced android development,” 2020. [Online]. Available:

https://developer.android.com/courses/advanced-training/
overview

[39] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An empirical study of third-party library updatability
on android,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 2187–2200.

[40] G. Nunez, “Party pooper: Third-party libraries in android,” Tech.
Rep. School Elect. Eng. Comput. Sci. Univ. California, Berkeley,
2011.

[41] I. G. W. Group, “Standard glossary of terms used in software
testing,” Int. Softw. Testing Qualifications Board, pp. 1–25, 2015.

[42] “Root cause,” 2020. [Online]. Available: https://en.wikipedia.
org/wiki/Root_cause

[43] “Activity lifecycle,” 2020. [Online]. Available: https://developer.
android.com/guide/components/activities/activity-life cycle.
html

[44] “Bankdroid,” 2020. [Online]. Available: https://github.com/
liato/android-bankdroid

[45] “Bankdroid revision 8b31cd3,” 2020. [Online]. Available:
https://github.com/liato/android-bankdroid/commit/8b31cd
36fab5ff746ed5a 2096369f9990de7b064

[46] “Fragments,” 2020. [Online]. Available: https://developer.
android.com/guide/components/fragments.html

[47] “c:geo,” 2020. [Online]. Available: https://github.com/cgeo/cgeo
[48] “c:geo revision d6b4e4d,” 2020. [Online]. Available: https://

github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85
f24ac08f 524b6

[49] “Handler,” 2020. [Online]. Available: https://developer.android.
com/reference/android/os/Handler.html

[50] “Looper,” 2020. [Online]. Available: https://developer.android.
com/reference/android/os/Looper.html

[51] “Local-GSM-Backend,” 2020. [Online]. Available: https://github.
com/n76/Local-GSM-Backend

[52] “PhoneStateListener,” 2020. [Online]. Available: http://grepcode.
com/file/repository.grepcode.com/java/ext/com.google.an
droid/android/4.3.1_r1/android/telephony/PhoneStateListener.
java#PhoneStateListener.0mHandler

[53] “Local-GSM-Backend revision 07e4a759,” 2020. [Online]. Avail-
able: https://github.com/n76/Local-GSM-Backend/commit/
07e4a759392c6f2c0b28890 f96a177cb211ffc2d

[54] “NetworkOnMainThreadException,” 2020. [Online]. Available:
https://developer.android.com/reference/android/os/
NetworkOnMainThreadE xception.html

[55] “Requesting permissions at runtime,” 2020. [Online]. Available:
https://developer.android.com/training/permissions/request
ing.html

[56] P. Bielik, V. Raychev, and M. Vechev, “Scalable race detection for
android applications,” in Proc. ACM SIGPLAN Int. Conf. Object-
Oriented Program. Syst. Languages Appl., 2015, pp. 332–348.

[57] Y. Liu et al., “Droidleaks: A comprehensive database of resource
leaks in android apps,” Empir. Softw. Eng., vol. 24, no. 6,
pp. 3435–3483, 2019.

[58] “Nextcloud notes,” 2020. [Online]. Available: https://github.
com/stefan-niedermann/nextcloud-notes

[59] “Nextcloud notes issue,” 2020. [Online]. Available: https://
github.com/stefan-niedermann/nextcloud-notes/issues/199

[60] “Nextcloud notes revision,” 2020. [Online]. Available: https://
github.com/stefan-niedermann/nextcloud-notes/pull/212/
commits/a a1a97292b5f7511473282cc40f23e786f019d7f

[61] “Atarashii,” 2020. [Online]. Available: https://github.com/
AnimeNeko/Atarashii

[62] “Atarashii revision b311ec3,” 2020. [Online]. Available: https://
github.com/AnimeNeko/Atarashii/commit/
b311ec327413aa4ef4aaabb8a 8496c61d342cfe9

[63] “JDK 7 compatibility issues,” 2020. [Online]. Available: http://
kb.yworks.com/article/550/

[64] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmenta-
tion: Characterizing and detecting compatibility issues for
android apps,” in Proc. 31st IEEE/ACM Int. Conf. Autom. Softw.
Eng., 2016, pp. 226–237.

[65] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu,
“Understanding and detecting fragmentation-induced compati-
bility issues for android apps,” IEEE Trans. Softw. Eng., to be
published.

[66] C. Hsiao et al., “Race detection for event-driven mobile
applications,” in Proc. 35th ACM SIGPLAN Conf. Program. Lang.
Des. Implementation, 2014, pp. 326–336.

[67] M. L. V�asquez, C. Bernal-C�ardenas, K.Moran, and D. Poshyvanyk,
“How do developers test android applications?” in Proc. IEEE Int.
Conf. Softw.Maintenance Evol., 2017, pp. 613–622.

[68] “MonkeyRunner,” [Online]. Available: https://developer.android.
com/studio/test/monkeyrunner/

[69] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (E),” in Proc. 30th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2015, pp. 429–440.

[70] W. Wang et al., “An empirical study of android test generation
tools in industrial cases,” in Proc. 33rd ACM/IEEE Int. Conf.
Autom. Softw. Eng., 2018, pp. 738–748.

[71] A. Arcuri and L. C. Briand, “A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineer-
ing,” Softw. Test., Verif. Reliab., vol. 24, no. 3, pp. 219–250,
2014.

[72] “Mann-Whitney U test,” 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Mann-Whitney_U_test

[73] E. Kowalczyk, M. B. Cohen, and A. M. Memon, “Configurations
in android testing: They matter,” in Proc. 1st Int. Workshop Advan-
ces Mobile App Anal., 2019, pp. 1–6.

[74] K. Moran, M. L. V�asquez, C. Bernal-C�ardenas, andD. Poshyvanyk,
“Auto-completing bug reports for android applications,” in Proc.
10th JointMeeting Found. Softw. Eng., 2015, pp. 673–686.

[75] K. Moran, M. L. V�asquez, C. Bernal-C�ardenas, and D. Poshyvanyk,
“FUSION: A tool for facilitating and augmenting android bug
reporting,” in Proc. IEEE/ACM38th Int. Conf. Softw. Eng. Companion,
2016, pp. 609–612.

[76] K. Moran, M. L. V�asquez, C. Bernal-C�ardenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and
reproducing android application crashes,” in Proc. IEEE Int.
Conf. Softw. Testing Verification Validation, 2016, pp. 33–44.

[77] M. White, M. L. V�asquez, P. Johnson, C. Bernal-C�ardenas, and
D. Poshyvanyk, “Generating reproducible and replayable bug
reports from android application crashes,” in Proc. IEEE 23rd Int.
Conf. Program Comprehension, 2015, pp. 48–59.

[78] M. Fazzini, M. Prammer, M. d’Amorim, and A. Orso,
“Automatically translating bug reports into test cases for mobile
apps,” in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2019, pp. 141–152.

[79] Y. Zhao et al., “Recdroid: Automatically reproducing android
application crashes from bug reports,” in Proc. IEEE/ACM 41st
Int. Conf. Softw. Eng., 2019, pp. 128–139.

[80] M. G�omez, R. Rouvoy, B. Adams, and L. Seinturier,
“Reproducing context-sensitive crashes of mobile apps using
crowdsourced monitoring,” in Proc. IEEE/ACM Int. Conf. Mobile
Softw. Eng. Syst., 2016, pp. 88–99.

[81] L. Fan et al., “Efficiently manifesting asynchronous programming
errors in android apps,” in Proc. 33rd ACM/IEEE Int. Conf. Auto-
mated Softw. Eng., 2018, pp. 486–497.

[82] “ACRA: Application crash reports for android,” 2020. [Online].
Available: https://github.com/ACRA/acra

[83] “Google analytics for firebase,” 2020. [Online]. Available:
https://firebase.google.com/products/analytics/

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1135

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

http://arxiv.org/abs/1809.07353
http://arxiv.org/abs/1809.07353
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/reference/packages.html
https://f-droid.org/
https://play.google.com/store/apps
https://play.google.com/store/apps
http://emma.sourceforge.net/
http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
https://www.mturk.com
https://www.mturk.com
http://guides.codepath.com/android
http://guides.codepath.com/android
https://developer.android.com/courses/advanced-training/overview
https://developer.android.com/courses/advanced-training/overview
https://en.wikipedia.org/wiki/Root_cause
https://en.wikipedia.org/wiki/Root_cause
https://developer.android.com/guide/components/activities/activity-life cycle.html
https://developer.android.com/guide/components/activities/activity-life cycle.html
https://developer.android.com/guide/components/activities/activity-life cycle.html
https://github.com/liato/android-bankdroid
https://github.com/liato/android-bankdroid
https://github.com/liato/android-bankdroid/commit/8b31cd36fab5ff746ed5a 2096369f9990de7b064
https://github.com/liato/android-bankdroid/commit/8b31cd36fab5ff746ed5a 2096369f9990de7b064
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html
https://github.com/cgeo/cgeo
https://github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f 524b6
https://github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f 524b6
https://github.com/cgeo/cgeo/commit/d6b4e4d958568ea04669f511a85f24ac08f 524b6
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Handler.html
https://developer.android.com/reference/android/os/Looper.html
https://developer.android.com/reference/android/os/Looper.html
https://github.com/n76/Local-GSM-Backend
https://github.com/n76/Local-GSM-Backend
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.an droid/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.an droid/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.an droid/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
http://grepcode.com/file/repository.grepcode.com/java/ext/com.google.an droid/android/4.3.1_r1/android/telephony/PhoneStateListener.java#PhoneStateListener.0mHandler
https://github.com/n76/Local-GSM-Backend/commit/07e4a759392c6f2c0b28890 f96a177cb211ffc2d
https://github.com/n76/Local-GSM-Backend/commit/07e4a759392c6f2c0b28890 f96a177cb211ffc2d
https://developer.android.com/reference/android/os/NetworkOnMainThreadE xception.html
https://developer.android.com/reference/android/os/NetworkOnMainThreadE xception.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://github.com/stefan-niedermann/nextcloud-notes
https://github.com/stefan-niedermann/nextcloud-notes
https://github.com/stefan-niedermann/nextcloud-notes/issues/199
https://github.com/stefan-niedermann/nextcloud-notes/issues/199
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/a a1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/a a1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/stefan-niedermann/nextcloud-notes/pull/212/commits/a a1a97292b5f7511473282cc40f23e786f019d7f
https://github.com/AnimeNeko/Atarashii
https://github.com/AnimeNeko/Atarashii
https://github.com/AnimeNeko/Atarashii/commit/b311ec327413aa4ef4aaabb8a 8496c61d342cfe9
https://github.com/AnimeNeko/Atarashii/commit/b311ec327413aa4ef4aaabb8a 8496c61d342cfe9
https://github.com/AnimeNeko/Atarashii/commit/b311ec327413aa4ef4aaabb8a 8496c61d342cfe9
http://kb.yworks.com/article/550/
http://kb.yworks.com/article/550/
https://developer.android.com/studio/test/monkeyrunner/
https://developer.android.com/studio/test/monkeyrunner/
https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://en.wikipedia.org/wiki/Mann-Whitney_U_test
https://github.com/ACRA/acra
https://firebase.google.com/products/analytics/

[84] “Monitor the performance and usage of your Android, iOS apps
with splunk enterprise,” 2020. [Online]. Available: https://mint.
splunk.com/

[85] “MonkeyScript,” 2020. [Online]. Available: https://android.
googlesource.com/platform/development/+/android-4.2.2_r1/
cmds/monkey/src/com/android/commands/monkey/Monkey
SourceScript.java

[86] “UIAutomator,” 2020. [Online]. Available: https://developer.
android.com/training/testing/ui-automator

[87] A. M. Memon and M. B. Cohen, “Automated testing of GUI
applications: Models, tools, and controlling flakiness,” in Proc.
Int. Conf. Softw. Eng., 2013, pp. 1479–1480.

[88] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical anal-
ysis of flaky tests,” in Proc. 22nd ACM SIGSOFT Int. Symp. Foun-
dations Softw. Eng., 2014, pp. 643–653.

[89] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of
flaky tests in android apps,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Foundations Softw. Eng., 2018, pp. 534–538.

[90] “Fragment transactions and activity state loss,” 2020. [Online].
Available: http://www.androiddesignpatterns.com/2013/08/
fragment-transaction-commit-state-loss.html

[91] Z. Shan, T. Azim, and I. Neamtiu, “Finding resume and restart
errors in android applications,” in Proc. ACM SIGPLAN Int. Conf.
Object-Oriented Program. Syst. Languages Appl., 2016, pp. 864–880.

[92] “NextGIS mobile revision 2ef12a7,” 2020. [Online]. Available:
https://github.com/nextgis/android_gisapp/commit/
2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e

[93] “WordPress revision 663ce5c,” 2020. [Online]. Available:
https://github.com/wordpress-mobile/WordPress-Android/
commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f

[94] “Keeping your app responsive,” 2020. [Online]. Available:
https://developer.android.com/training/articles/perf-anr.html

[95] “Managing bitmap memory,” 2020. [Online]. Available: https://
developer.android.com/topic/performance/graphics/manage-
memory. html

[96] “MPDroid issue,” 2020. [Online]. Available: https://github.
com/abarisain/dmix/issues/286

[97] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the android ecosystem,” in Proc. IEEE
Int. Conf. Softw. Maintenance, 2013, pp. 70–79.

[98] S. GRAZIUSSI, “Lifecycle and event-based testing for android
applications,” Master’s thesis, School Ind. Eng. Inf., Politecnico,
2016.

[99] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of exist-
ing faults to enable controlled testing studies for java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[100] C. Le Goues et al., “The manybugs and introclass benchmarks for
automated repair of C programs,” IEEE Trans. Softw. Eng., vol.
41, no. 12, pp. 1236–1256, Dec. 2015.

[101] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing fail-
ures in mobile oses: A case study with android and symbian,” in
Proc. IEEE 21st Int. Symp. Softw. Rel. Eng., 2010, pp. 249–258.

[102] J. Kochhar, J. Keng, and T. Biying, “An empirical study on bug
reports of android 3rd party libraries,” Singapore Manage. Univ.,
2013.

[103] Y. Liu, C. Xu, and S. Cheung, “Characterizing and detecting per-
formance bugs for smartphone applications,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1013–1024.

[104] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding
and detecting wake lock misuses for android applications,” in
Proc. 24th ACM SIGSOFT Int. Symp. Foundations Softw. Eng., 2016,
pp. 396–409.

[105] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execu-
tion of android test suites in adverse conditions,” in Proc. Int.
Symp. Softw. Testing Anal., 2015, pp. 83–93.

[106] D. Amalfitano, V. Riccio, A. C. R. Paiva, and A. R. Fasolino,
“Why does the orientation change mess up my android applica-
tion? from GUI failures to code faults,” Softw. Test., Verif. Rel.,
vol. 28, no. 1, 2018, Art. no. e1654.

[107] S. Chen et al., “Are mobile banking apps secure? what can be
improved?” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2018, pp. 797–802.

[108] S. Chen et al., “An empirical assessment of security risks of global
android banking apps,” in Proc. Int. Conf. Softw. Eng., 2020,
pp. 596–607.

[109] “Espresso,” 2020. [Online]. Available: https://developer.android.
com/training/testing/espresso/

[110] N. P. B. Jr., “Data flow oriented UI testing: Exploiting data flows
and UI elements to test android applications,” in Proc. 26th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2017, pp. 432–435.

[111] T. Su et al., “A survey on data-flow testing,” ACM Comput. Surv.,
vol. 50, no. 1, pp. 5:1–5:35, Mar. 2017.

[112] “PMD rules,” 2020. [Online]. Available: https://pmd.github.io/
pmd-5.8.1/pmd-java/rules/java/android.html

[113] “Android lint checks,” 2020. [Online]. Available: http://tools.
android.com/tips/lint-checks

[114] “Stoat,” 2020. [Online]. Available: https://github.com/tingsu/
Stoat

[115] K. Moran, M. L. V�asquez, C. Bernal-C�ardenas, C. Vendome, and
D. Poshyvanyk, “Crashscope: A practical tool for automated test-
ing of android applications,” in Proc. IEEE/ACM 39th Int. Conf.
Softw. Eng. Companion, 2017, pp. 15–18.

[116] G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively
detecting mobile app bugs with AppDoctor,” in Proc. 9th Eur.
Conf. Comput. Syst., 2014, pp. 18:1–18:15.

[117] R. Vall�ee-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot-a java bytecode optimization framework,”
in Proc. Conf. Centre Advanced Studies Collaborative Res., 1999,
Art. no. 13.

[118] S. Sinha, H. Shah, C. G€org, S. Jiang, M. Kim, and M. J. Harrold,
“Fault localization and repair for java runtime exceptions,” in
Proc. 9th Eur. Conf. Comput. Syst., 2009, pp. 153–164.

[119] S. Jiang, H. Zhang, Q. Wang, and Y. Zhang, “A debugging
approach for java runtime exceptions based on program slicing
and stack traces,” in Proc. 10th Int. Conf. Quality Softw., 2010,
pp. 393–398.

[120] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator:
Locating crashing faults based on crash stacks,” in Proc. Int.
Symp. Softw. Testing Anal., 2014, pp. 204–214.

[121] Y. Jia and M. Harman, “An analysis and survey of the develop-
ment of mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5,
pp. 649–678, Sep./Oct. 2011.

[122] “PIT,” 2020. [Online]. Available: http://pitest.org/
[123] R. Just, “The major mutation framework: Efficient and scalable

mutation analysis for java,” in Proc. Int. Symp. Softw. Testing
Anal., 2014, pp. 433–436.

[124] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards muta-
tion analysis of android apps,” in Proc. IEEE 8th Int. Conf. Softw.
Testing Verification Validation Workshops, 2015, pp. 1–10.

[125] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation opera-
tors for testing android apps,” Inf. Softw. Technol., vol. 81,
pp. 154–168, 2017.

[126] L. Deng, J. Offutt, and D. Samudio, “Is mutation analysis effec-
tive at testing android apps?” in Proc. IEEE Int. Conf. Softw. Qual-
ity Rel. Secur., 2017, pp. 86–93.

[127] M. Linares-V�asquez et al., “Enabling mutation testing for android
apps,” in Proc. 11th Joint Meeting Foundations Softw. Eng., 2017,
pp. 233–244.

[128] K. Moran et al., “Mdroid+: A mutation testing framework for
android,” in Proc. 40th Int. Conf. Softw. Eng.: Companion Proc.,
2019, pp. 33–36.

[129] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing GUI
event traces,” in Proc. 24th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2016, pp. 422–434.

[130] W. Choi, K. Sen, G. C. Necula, and W. Wang, “Detreduce: mini-
mizing android GUI test suites for regression testing,” in Proc.
IEEE/ACM 40th Int. Conf. Softw. Eng., 2019, pp. 445–455.

[131] B. Jiang, Y. Wu, T. Li, and W. K. Chan, “Simplydroid: efficient
event sequence simplification for android application,” in Proc.
32nd IEEE/ACM Int. Conf. Autom. Softw. Eng., 2017, pp. 297–307.

[132] C. Hu and I. Neamtiu, “Automating GUI testing for android
applications,” in Proc. 6th Int. Workshop Autom. Softw. Test, 2011,
pp. 77–83.

[133] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of
Android applications,” in Proc. 27th IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2012, pp. 258–261.

[134] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated gener-
ation of oracles for testing user-interaction features of mobile
apps,” in Proc. IEEE 7th Int. Conf. Softw. Testing Verification Vali-
dation, 2014, pp. 183–192.

[135] L. Fan, S. Chen, L. Xu, Z. Yang, and H. Zhu, “Model-based con-
tinuous verification,” in Proc. 23rd Asia-Pacific Softw. Eng. Conf.,
2016, pp. 81–88.

1136 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

https://mint.splunk.com/
https://mint.splunk.com/
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://android.googlesource.com/platform/development/+/android-4.2.2_r1/cmds/monkey/src/com/android/commands/monkey/MonkeySourceScript.java
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
http://www.androiddesignpatterns.com/2013/08/fragment-transaction-commit-state-loss.html
http://www.androiddesignpatterns.com/2013/08/fragment-transaction-commit-state-loss.html
https://github.com/nextgis/android_gisapp/commit/2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e
https://github.com/nextgis/android_gisapp/commit/2ef12a75eda6ed1c39a51e2ba18039cc571e5b0e
https://github.com/wordpress-mobile/WordPress-Android/commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f
https://github.com/wordpress-mobile/WordPress-Android/commit/663ce5c1bbd739f29f6c23d9ecacbd666e4f806f
https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/topic/performance/graphics/manage-memory. html
https://developer.android.com/topic/performance/graphics/manage-memory. html
https://developer.android.com/topic/performance/graphics/manage-memory. html
https://github.com/abarisain/dmix/issues/286
https://github.com/abarisain/dmix/issues/286
https://developer.android.com/training/testing/espresso/
https://developer.android.com/training/testing/espresso/
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/java/android.html
https://pmd.github.io/pmd-5.8.1/pmd-java/rules/java/android.html
http://tools.android.com/tips/lint-checks
http://tools.android.com/tips/lint-checks
https://github.com/tingsu/Stoat
https://github.com/tingsu/Stoat
http://pitest.org/

[136] A. Banerjee, H.-F. Guo, and A. Roychoudhury, “Debugging
energy-efficiency related field failures in mobile apps,” in Proc.
IEEE/ACM Int. Conf. Mobile Softw. Eng. Syst., 2016, pp. 127–138.

[137] H. Huang, L. Wei, Y. Liu, and S. Cheung, “Understanding and
detecting callback compatibility issues for android applications,”
in Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw. Eng., 2019,
pp. 532–542.

[138] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: Permission-
aware GUI testing of android,” in Proc. 11th Joint Meeting Found.
Softw. Eng., 2017, pp. 220–232.

[139] H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak
in android applications,” in Proc. IEEE 15th Int. Symp. High-
Assurance Syst. Eng., 2014, pp. 176–183.

[140] G. Santhanakrishnan, C. Cargile, and A. Olmsted, “Memory leak
detection in android applications based on code patterns,” in
Proc. Int. Conf. Inf. Soc., 2016, pp. 133–134.

[141] J.Hu, L.Wei, Y. Liu, S. Cheung, andH.Huang, “A tale of two cities:
Howwebview induces bugs to android applications,” in Proc. 33rd
ACM/IEEE Int. Conf. Autom. Softw. Eng., 2019, pp. 702–713.

[142] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proc. 20th USENIX Conf. Secur.,
2011, pp. 21–21.

[143] S. Chen, L. Fan, C. Chen,M. Xue, Y. Liu, and L. Xu, “GUI-squatting
attack: Automated generation of android phishing apps,” IEEE
Trans. Dependable Secure Comput., to be published.

[144] C. Tang S. et al., “A large-scale empirical study on industrial fake
apps,” in Proc. 41st Int. Conf. Softw. Eng.: Softw. Eng. Practice,
2019, pp. 183–192.

[145] “AndroTest,” 2019. [Online]. Available: http://bear.cc.gatech.
edu/ shauvik/androtest/

[146] “DroidBugs,” 2020. [Online]. Available: https://github.com/
I4Soft/DroidBugs

[147] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in Proc.
IEEE/ACM 13th Working Conf. Mining Softw. Repositories, 2016,
pp. 464–467.

[148] O. Riganelli, D. Micucci, and L. Mariani, “From source code to
test cases: A comprehensive benchmark for resource leak detec-
tion in android apps,” Softw.: Practice Experience, vol. 49, no. 3,
pp. 540–548, 2019.

[149] S. Mostafa, R. Rodriguez, and X. Wang, “Experience paper: A
study on behavioral backward incompatibilities of java software
libraries,” in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Testing
Anal., 2017, pp. 215–225.

Ting Su received the BS degree in software engi-
neering and PhD degree in computer science from
the School of Software Engineering, East China
Normal University, Shanghai, China, in 2011 and
2016, respectively. He is a postdoc scholar with the
Department of Computer Science, ETH Zurich,
Switzerland, and will join East China Normal Uni-
versity as a professor in Fall 2020. Previously, he
was a visiting scholar of UC Davis, USA from 2014
to 2015. His research focuses on software testing
and validation, and was recognizedwith three ACM

SIGSOFT distinguished paper awards (ICSE 2018, ASE 2018, ASE 2019).
He has published broadly in top-tier programming language and software
engineering venues, including PLDI, ICSE, FSE, ASE, and CSUR. For
more information, please visit http://tingsu.github.io/.

Lingling Fan received the BEng and PhD degrees
in computer science from East China Normal Uni-
versity, Shanghai, China, in 2014 and 2019,
respectively. She is a research fellow with the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore, and
will join Nankai University in Fall 2020. She had
been a research assistant in the Cyber Security
Lab of NTU (2017–2019). Her research focuses on
program analysis and testing, software security
analysis and big data driven analysis, and has pub-

lished in top-tier venues of software engineering and security (including
ICSE, ASE, ESEC/FSE, S&P, TDSC, etc.) She got an ACMSIGSOFT Dis-
tinguished Paper Award at ICSE 2018. For more information, please visit
https://lingling-fan.github.io/.

Sen Chen received the PhD degree in computer
science from the School of Computer Science and
Software Engineering, East China Normal Univer-
sity, Shanghai, China, in Jun. 2019. Currently, he is
a research assistant professor with the School of
Computer Science and Engineering, Nanyang
Technological University, Singapore, and will join
College of Intelligence and Computing, Tianjin Uni-
versity as a tenured associate professor. Previ-
ously, he was a research assistant of NTU from
2016 to 2019 and a research fellow from 2019–

2020. His research focuses on security and software engineering. He has
published broadly in top-tier security and software engineering venues,
including ICSE, ESEC/FSE, ASE, TSE, S&P, TDSC, etc. For more infor-
mation, please visit https://sen-chen.github.io/.

Liu Yang received the bachelors and PhD degrees
in computer science from the National University of
Singapore (NUS), in 2005 and 2010, and continued
with his postdoctoral research in NUS. He is now
an associate professor with Nanyang Technologi-
cal University. His current research focuses on soft-
ware engineering, formal methods and security,
and particularly specializes in software verification
using model checking techniques, which led to the
development of a state-of-the-art model checker,
Process Analysis Toolkit. For more information,
please visit http://www.ntu.edu.sg/home/yangliu/.

Lihua Xu received the master’s and PhD degrees
in computer science from the University of
California, Irvine. She is associate professor of
Practice in computer science at NYU Shanghai.
Her research interests include software engineer-
ing and mobile security, with a focus on improving
software quality via program analysis. She has
published in top-tier venues such as ICSE, FSE,
ASE, CCS, and MobiCom. Her recent work in soft-
ware analysis received the 2018 ACM SIGSOFT
Distinguished Paper Award. She is a recipient
of the “Best New Investigator” Award at the 2006
Grace HopperWomen inComputing conference.

GeguangPu received theBSdegree inmathemat-
ics from Wuhan University, in 2000, and the PhD
degree in mathematics from Peking University, in
2005. He is a professor with the School of Software
Engineering, East China Normal University. His
research interests include program testing, analy-
sis and verification. He served as PC members for
international conferences such as SEFM, ATVA,
TASE etc. He was a co-chair of ATVA 2015. He
has published more than 70 publications on the
topics of software engineering and system verifica-

tion (including ICSE, FSE, IJCAI, FM, ECAI, CONCURetc).

Zhendong Su received the BS degree in com-
puter science and BA degree in mathematics from
the University of Texas at Austin, Austin, TX, and
the MS and PhD degrees in computer science
from the University of California at Berkeley,
Berkeley, CA. He is a professor in computer sci-
ence at ETH Zurich, where he specializes in pro-
gramming languages, software engineering, and
computer security. For more information, please
visit https://people.inf.ethz.ch/suz/.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SU ET AL.: WHY MY APP CRASHES? UNDERSTANDING AND BENCHMARKING FRAMEWORK-SPECIFIC EXCEPTIONS OF ANDROID... 1137

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 06:59:37 UTC from IEEE Xplore. Restrictions apply.

http://bear.cc.gatech.edu/ shauvik/androtest/
http://bear.cc.gatech.edu/ shauvik/androtest/
https://github.com/I4Soft/DroidBugs
https://github.com/I4Soft/DroidBugs
http://tingsu.github.io/
https://lingling-fan.github.io/
https://sen-chen.github.io/
http://www.ntu.edu.sg/home/yangliu/
https://people.inf.ethz.ch/suz/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

